X-Git-Url: http://research.m1stereo.tv/gitweb?a=blobdiff_plain;f=src%2Fmodules%2Fcore%2Ftransition_composite.c;h=b5121edc7b5e0935ea88fb7fa1be15d839963ac8;hb=9671ab81bdb3a86155fbf8627e06f6de18e93fff;hp=efa251c3ece08c4de6bc85fdf397611a045d9154;hpb=74268cd86c30a0af9f03981c799aa4bba253c6e9;p=melted diff --git a/src/modules/core/transition_composite.c b/src/modules/core/transition_composite.c index efa251c..b5121ed 100644 --- a/src/modules/core/transition_composite.c +++ b/src/modules/core/transition_composite.c @@ -23,31 +23,68 @@ #include #include +#include /** Geometry struct. */ struct geometry_s { + int nw; // normalised width + int nh; // normalised height + int sw; // scaled width, not including consumer scale based upon w/nw + int sh; // scaled height, not including consumer scale based upon h/nh float x; float y; float w; float h; float mix; + int halign; // horizontal alignment: 0=left, 1=center, 2=right + int valign; // vertical alignment: 0=top, 1=middle, 2=bottom }; -/** Parse a geometry property string. +/** Parse a value from a geometry string. */ -static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property ) +static float parse_value( char **ptr, int normalisation, char delim, float defaults ) { + float value = defaults; + + if ( *ptr != NULL && **ptr != '\0' ) + { + char *end = NULL; + value = strtod( *ptr, &end ); + if ( end != NULL ) + { + if ( *end == '%' ) + value = ( value / 100.0 ) * normalisation; + while ( *end == delim || *end == '%' ) + end ++; + } + *ptr = end; + } + + return value; +} + +/** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be + expressed as a percentage by appending a % after the value, otherwise values are + assumed to be relative to the normalised dimensions of the consumer. +*/ + +static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh ) +{ + // Assign normalised width and height + geometry->nw = nw; + geometry->nh = nh; + // Assign from defaults if available if ( defaults != NULL ) { geometry->x = defaults->x; geometry->y = defaults->y; - geometry->w = defaults->w; - geometry->h = defaults->h; + geometry->w = geometry->sw = defaults->w; + geometry->h = geometry->sh = defaults->h; geometry->mix = defaults->mix; } else @@ -57,7 +94,14 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa // Parse the geomtry string if ( property != NULL ) - sscanf( property, "%f,%f:%fx%f:%f", &geometry->x, &geometry->y, &geometry->w, &geometry->h, &geometry->mix ); + { + char *ptr = property; + geometry->x = parse_value( &ptr, nw, ',', geometry->x ); + geometry->y = parse_value( &ptr, nh, ':', geometry->y ); + geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w ); + geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h ); + geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix ); + } } /** Calculate real geometry. @@ -66,13 +110,42 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, struct geometry_s *out, float position ) { // Calculate this frames geometry - output->x = in->x + ( out->x - in->x ) * position; - output->y = in->y + ( out->y - in->y ) * position; + output->nw = in->nw; + output->nh = in->nh; + output->x = in->x + ( out->x - in->x ) * position + 0.5; + output->y = in->y + ( out->y - in->y ) * position + 0.5; output->w = in->w + ( out->w - in->w ) * position; output->h = in->h + ( out->h - in->h ) * position; output->mix = in->mix + ( out->mix - in->mix ) * position; } +/** Parse the alignment properties into the geometry. +*/ + +static int alignment_parse( char* align ) +{ + int ret = 0; + + if ( align == NULL ); + else if ( isdigit( align[ 0 ] ) ) + ret = atoi( align ); + else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' ) + ret = 1; + else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' ) + ret = 2; + + return ret; +} + +/** Adjust position according to scaled size and alignment properties. +*/ + +static void alignment_calculate( struct geometry_s *geometry ) +{ + geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5; + geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5; +} + /** Calculate the position for this frame. */ @@ -89,75 +162,49 @@ static float position_calculate( mlt_transition this, mlt_frame frame ) return ( float )( position - in ) / ( float )( out - in + 1 ); } -/** Composite function. +/** Calculate the field delta for this frame - position between two frames. */ -static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int width_dest, int height_dest, mlt_frame that, struct geometry_s geometry ) +static float delta_calculate( mlt_transition this, mlt_frame frame ) { - int ret = 0; - uint8_t *p_src; - int i, j; - int stride_src; - int stride_dest; - int x_src = 0, y_src = 0; - - mlt_image_format format_src = format_dest; - int x = ( int )( ( float )width_dest * geometry.x / 100 ); - int y = ( int )( ( float )height_dest * geometry.y / 100 ); - float weight = geometry.mix / 100; - - // Compute the dimensioning rectangle - int width_src = ( int )( ( float )width_dest * geometry.w / 100 ); - int height_src = ( int )( ( float )height_dest * geometry.h / 100 ); + // Get the in and out position + mlt_position in = mlt_transition_get_in( this ); + mlt_position out = mlt_transition_get_out( this ); - mlt_properties b_props = mlt_frame_properties( that ); - mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL ); - mlt_properties properties = mlt_transition_properties( this ); + // Get the position of the frame + mlt_position position = mlt_frame_get_position( frame ); - if ( mlt_properties_get( properties, "distort" ) == NULL && - mlt_properties_get( mlt_frame_properties( that ), "real_width" ) != NULL ) - { - int width_b = mlt_properties_get_double( b_props, "real_width" ); - int height_b = mlt_properties_get_double( b_props, "real_height" ); + // Now do the calcs + float x = ( float )( position - in ) / ( float )( out - in + 1 ); + position++; + float y = ( float )( position - in ) / ( float )( out - in + 1 ); - // See if we need to normalise pixel aspect ratio - // We can use consumer_aspect_ratio because the a_frame will take on this aspect - double aspect = mlt_properties_get_double( b_props, "consumer_aspect_ratio" ); - if ( aspect != 0 ) - { - // Derive the consumer pixel aspect - double oaspect = aspect / ( double )width_dest * height_dest; + return ( y - x ) / 2.0; +} - // Get the b frame pixel aspect - usually 1 - double iaspect = mlt_properties_get_double( b_props, "aspect_ratio" ) / width_b * height_b; +static int get_value( mlt_properties properties, char *preferred, char *fallback ) +{ + int value = mlt_properties_get_int( properties, preferred ); + if ( value == 0 ) + value = mlt_properties_get_int( properties, fallback ); + return value; +} - // Normalise pixel aspect - if ( iaspect != 0 && iaspect != oaspect ) - width_b = iaspect / oaspect * ( double )width_b + 0.5; - - // Tell rescale not to normalise display aspect - mlt_frame_set_aspect_ratio( that, aspect ); - } +/** Composite function. +*/ - // Constrain the overlay to the dimensioning rectangle - if ( width_b < width_src ) - width_src = width_b; - if ( height_b < height_src ) - height_src = height_b; +static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field ) +{ + int ret = 0; + int i, j; + int x_src = 0, y_src = 0; + float weight = geometry.mix / 100; + int stride_src = width_src * 2; + int stride_dest = width_dest * 2; - // Adjust overall scale for consumer - double consumer_scale = mlt_properties_get_double( b_props, "consumer_scale" ); - if ( consumer_scale > 0 ) - { - width_src = consumer_scale * width_src + 0.5; - height_src = consumer_scale * height_src + 0.5; - } - } - else if ( mlt_properties_get( b_props, "real_width" ) != NULL ) - { - // Tell rescale not to normalise display aspect - mlt_properties_set_double( b_props, "consumer_aspect_ratio", 0 ); - } + // Adjust to consumer scale + int x = geometry.x * width_dest / geometry.nw + 0.5; + int y = geometry.y * height_dest / geometry.nh + 0.5; x -= x % 2; @@ -168,14 +215,6 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) ) return ret; - format_src = mlt_image_yuv422; - format_dest = mlt_image_yuv422; - - mlt_frame_get_image( that, &p_src, &format_src, &width_src, &height_src, 1 /* writable */ ); - - stride_src = width_src * 2; - stride_dest = width_dest * 2; - // crop overlay off the left edge of frame if ( x < 0 ) { @@ -204,13 +243,31 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid // offset pointer into frame buffer based upon positive, even coordinates only! p_dest += ( x < 0 ? 0 : x ) * 2 + ( y < 0 ? 0 : y ) * stride_dest; - // Get the alpha channel of the overlay - uint8_t *p_alpha = mlt_frame_get_alpha_mask( that ); - // offset pointer into alpha channel based upon cropping if ( p_alpha ) p_alpha += x_src + y_src * stride_src / 2; + // Assuming lower field first + // Special care is taken to make sure the b_frame is aligned to the correct field. + // field 0 = lower field and y should be odd (y is 0-based). + // field 1 = upper field and y should be even. + if ( ( field > -1 ) && ( y % 2 == field ) ) + { + if ( y == 0 ) + p_dest += stride_dest; + else + p_dest -= stride_dest; + } + + // On the second field, use the other lines from b_frame + if ( field == 1 ) + { + p_src += stride_src; + if ( p_alpha ) + p_alpha += stride_src / 2; + height_src--; + } + uint8_t *p = p_src; uint8_t *q = p_dest; uint8_t *o = p_dest; @@ -220,14 +277,16 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid uint8_t UV; uint8_t a; float value; + int step = ( field > -1 ) ? 2 : 1; // now do the compositing only to cropped extents - for ( i = 0; i < height_src; i++ ) + for ( i = 0; i < height_src; i += step ) { - p = p_src; - q = p_dest; - o = p_dest; - z = p_alpha; + p = &p_src[ i * stride_src ]; + q = &p_dest[ i * stride_dest ]; + o = &p_dest[ i * stride_dest ]; + if ( p_alpha ) + z = &p_alpha[ i * stride_src / 2 ]; for ( j = 0; j < width_src; j ++ ) { @@ -238,12 +297,101 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid *o ++ = (uint8_t)( Y * value + *q++ * ( 1 - value ) ); *o ++ = (uint8_t)( UV * value + *q++ * ( 1 - value ) ); } + } - p_src += stride_src; - p_dest += stride_dest; - if ( p_alpha ) - p_alpha += stride_src / 2; + return ret; +} + + +/** Get the properly sized image from b_frame. +*/ + +static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry ) +{ + int ret = 0; + mlt_image_format format = mlt_image_yuv422; + + // Initialise the scaled dimensions from the computed + geometry->sw = geometry->w; + geometry->sh = geometry->h; + + // Compute the dimensioning rectangle + mlt_properties b_props = mlt_frame_properties( b_frame ); + mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL ); + mlt_properties properties = mlt_transition_properties( this ); + + if ( mlt_properties_get( properties, "distort" ) == NULL ) + { + // Now do additional calcs based on real_width/height etc + int normalised_width = geometry->w; + int normalised_height = geometry->h; + //int real_width = get_value( b_props, "real_width", "width" ); + int real_height = get_value( b_props, "real_height", "height" ); + double input_ar = mlt_frame_get_aspect_ratio( b_frame ); + double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" ); + //int scaled_width = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_width; + //int scaled_height = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_height; + int scaled_width = ( float )geometry->nw / geometry->nh / output_ar * real_height * input_ar; + int scaled_height = real_height; + //fprintf( stderr, "composite: real %dx%d scaled %dx%d normalised %dx%d\n", real_width, real_height, scaled_width, scaled_height, normalised_width, normalised_height ); + + // Now ensure that our images fit in the normalised frame + if ( scaled_width > normalised_width ) + { + scaled_height = scaled_height * normalised_width / scaled_width; + scaled_width = normalised_width; + } + if ( scaled_height > normalised_height ) + { + scaled_width = scaled_width * normalised_height / scaled_height; + scaled_height = normalised_height; + } + + // Special case + if ( scaled_height == normalised_height ) + scaled_width = normalised_width; + + // Now we need to align to the geometry + if ( scaled_width <= geometry->w && scaled_height <= geometry->h ) + { + // Save the new scaled dimensions + geometry->sw = scaled_width; + geometry->sh = scaled_height; + + mlt_properties_set( b_props, "distort", "true" ); + } + else + { + mlt_properties_set( b_props, "distort", "true" ); + } } + else + { + // We want to ensure that we bypass resize now... + mlt_properties_set( b_props, "distort", "true" ); + } + + // Take into consideration alignment for optimisation + alignment_calculate( geometry ); + + // Adjust to consumer scale + int x = geometry->x * *width / geometry->nw + 0.5; + int y = geometry->y * *height / geometry->nh + 0.5; + *width = geometry->sw * *width / geometry->nw; + *height = geometry->sh * *height / geometry->nh; + + x -= x % 2; + + //fprintf( stderr, "composite calculated %d,%d:%dx%d\n", x, y, *width, *height ); + + // optimization points - no work to do + if ( *width <= 0 || *height <= 0 ) + return 1; + + if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) ) + return 1; + + ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 /* writable */ ); return ret; } @@ -257,11 +405,17 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f // Get the b frame from the stack mlt_frame b_frame = mlt_frame_pop_frame( a_frame ); + // This compositer is yuv422 only + *format = mlt_image_yuv422; + // Get the image from the a frame mlt_frame_get_image( a_frame, image, format, width, height, 1 ); if ( b_frame != NULL ) { + // Get the properties of the a frame + mlt_properties a_props = mlt_frame_properties( a_frame ); + // Get the properties of the b frame mlt_properties b_props = mlt_frame_properties( b_frame ); @@ -278,23 +432,56 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f // Calculate the position float position = position_calculate( this, a_frame ); + float delta = delta_calculate( this, a_frame ); + + // Obtain the normalised width and height from the a_frame + int normalised_width = mlt_properties_get_int( a_props, "normalised_width" ); + int normalised_height = mlt_properties_get_int( a_props, "normalised_height" ); // Now parse the geometries - geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ) ); - geometry_parse( &end, &start, mlt_properties_get( properties, "end" ) ); + geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height ); + geometry_parse( &end, &start, mlt_properties_get( properties, "end" ), normalised_width, normalised_height ); - // Do the calculation - geometry_calculate( &result, &start, &end, position ); + // Now parse the alignment + result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) ); + result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) ); // Since we are the consumer of the b_frame, we must pass along these // consumer properties from the a_frame - mlt_properties_set_double( b_props, "consumer_aspect_ratio", - mlt_properties_get_double( mlt_frame_properties( a_frame ), "consumer_aspect_ratio" ) ); - mlt_properties_set_double( b_props, "consumer_scale", - mlt_properties_get_double( mlt_frame_properties( a_frame ), "consumer_scale" ) ); + mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) ); + mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) ); + + // Do the calculation + geometry_calculate( &result, &start, &end, position ); + + // Get the image from the b frame + uint8_t *image_b; + int width_b = *width; + int height_b = *height; - // Composite the b_frame on the a_frame - composite_yuv( *image, *format, *width, *height, b_frame, result ); + if ( get_b_frame_image( b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) + { + uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame ); + int progressive = mlt_properties_get_int( a_props, "progressive" ) || + mlt_properties_get_int( a_props, "consumer_progressive" ) || + mlt_properties_get_int( properties, "progressive" ); + int field; + + for ( field = 0; field < ( progressive ? 1 : 2 ); field++ ) + { + // Assume lower field (0) first + float field_position = position + field * delta; + + // Do the calculation + geometry_calculate( &result, &start, &end, field_position ); + + // Align + alignment_calculate( &result ); + + // Composite the b_frame on the a_frame + composite_yuv( *image, *width, *height, image_b, width_b, height_b, alpha, result, progressive ? -1 : field ); + } + } } return 0; @@ -322,7 +509,7 @@ mlt_transition transition_composite_init( char *arg ) if ( this != NULL && mlt_transition_init( this, NULL ) == 0 ) { this->process = composite_process; - mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85,5:10x10" ); + mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" ); mlt_properties_set( mlt_transition_properties( this ), "end", "" ); } return this;