X-Git-Url: http://research.m1stereo.tv/gitweb?a=blobdiff_plain;f=src%2Fmodules%2Fcore%2Ftransition_composite.c;h=48f2d8aa64c902ba1b04f8d8cbd9fd3c118803bf;hb=52b7a4fb7a6e8745ac40153cd18c1fb5555a82f2;hp=3e4a7eabd74d8241626169d42e6863613b3422c5;hpb=6ff5549dc913d3976ef611d4c056b0fcb5d520e5;p=melted diff --git a/src/modules/core/transition_composite.c b/src/modules/core/transition_composite.c index 3e4a7ea..48f2d8a 100644 --- a/src/modules/core/transition_composite.c +++ b/src/modules/core/transition_composite.c @@ -19,17 +19,21 @@ */ #include "transition_composite.h" -#include +#include #include #include #include +#include +#include /** Geometry struct. */ struct geometry_s { + float position; + float mix; int nw; // normalised width int nh; // normalised height int sw; // scaled width, not including consumer scale based upon w/nw @@ -38,9 +42,10 @@ struct geometry_s float y; float w; float h; - float mix; int halign; // horizontal alignment: 0=left, 1=center, 2=right int valign; // vertical alignment: 0=top, 1=middle, 2=bottom + int distort; + struct geometry_s *next; }; /** Parse a value from a geometry string. @@ -85,7 +90,9 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa geometry->y = defaults->y; geometry->w = geometry->sw = defaults->w; geometry->h = geometry->sh = defaults->h; + geometry->distort = defaults->distort; geometry->mix = defaults->mix; + defaults->next = geometry; } else { @@ -93,13 +100,20 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa } // Parse the geomtry string - if ( property != NULL ) + if ( property != NULL && strcmp( property, "" ) ) { char *ptr = property; geometry->x = parse_value( &ptr, nw, ',', geometry->x ); geometry->y = parse_value( &ptr, nh, ':', geometry->y ); geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w ); geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h ); + if ( *ptr == '!' ) + { + geometry->distort = 1; + ptr ++; + if ( *ptr == ':' ) + ptr ++; + } geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix ); } } @@ -107,16 +121,138 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa /** Calculate real geometry. */ -static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, struct geometry_s *out, float position ) +static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position ) { + // Search in for position + struct geometry_s *out = in->next; + + if ( position >= 1.0 ) + { + int section = floor( position ); + position -= section; + if ( section % 2 == 1 ) + position = 1.0 - position; + } + + while ( out->next != NULL ) + { + if ( position >= in->position && position < out->position ) + break; + + in = out; + out = in->next; + } + + position = ( position - in->position ) / ( out->position - in->position ); + // Calculate this frames geometry output->nw = in->nw; output->nh = in->nh; - output->x = in->x + ( out->x - in->x ) * position + 0.5; - output->y = in->y + ( out->y - in->y ) * position + 0.5; + output->x = in->x + ( out->x - in->x ) * position; + output->y = in->y + ( out->y - in->y ) * position; output->w = in->w + ( out->w - in->w ) * position; output->h = in->h + ( out->h - in->h ) * position; output->mix = in->mix + ( out->mix - in->mix ) * position; + output->distort = in->distort; + + output->x = ( int )floor( output->x ) & 0xfffffffe; + output->w = ( int )floor( output->w ) & 0xfffffffe; + output->sw &= 0xfffffffe; +} + +void transition_destroy_keys( void *arg ) +{ + struct geometry_s *ptr = arg; + struct geometry_s *next = NULL; + + while ( ptr != NULL ) + { + next = ptr->next; + free( ptr ); + ptr = next; + } +} + +static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height ) +{ + // Loop variable for property interrogation + int i = 0; + + // Get the properties of the transition + mlt_properties properties = mlt_transition_properties( this ); + + // Get the in and out position + mlt_position in = mlt_transition_get_in( this ); + mlt_position out = mlt_transition_get_out( this ); + + // Create the start + struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) ); + + // Create the end (we always need two entries) + struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) ); + + // Pointer + struct geometry_s *ptr = start; + + // Parse the start property + geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height ); + + // Parse the keys in between + for ( i = 0; i < mlt_properties_count( properties ); i ++ ) + { + // Get the name of the property + char *name = mlt_properties_get_name( properties, i ); + + // Check that it's valid + if ( !strncmp( name, "key[", 4 ) ) + { + // Get the value of the property + char *value = mlt_properties_get_value( properties, i ); + + // Determine the frame number + int frame = atoi( name + 4 ); + + // Determine the position + float position = 0; + + if ( frame >= 0 && frame < ( out - in ) ) + position = ( float )frame / ( float )( out - in + 1 ); + else if ( frame < 0 && - frame < ( out - in ) ) + position = ( float )( out - in + frame ) / ( float )( out - in + 1 ); + + // For now, we'll exclude all keys received out of order + if ( position > ptr->position ) + { + // Create a new geometry + struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) ); + + // Parse and add to the list + geometry_parse( temp, ptr, value, normalised_width, normalised_height ); + + // Assign the position + temp->position = position; + + // Allow the next to be appended after this one + ptr = temp; + } + else + { + fprintf( stderr, "Key out of order - skipping %s\n", name ); + } + } + } + + // Parse the end + geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height ); + if ( out > 0 ) + end->position = ( float )( out - in ) / ( float )( out - in + 1 ); + else + end->position = 1; + + // Assign to properties to ensure we get destroyed + mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL ); + + return start; } /** Parse the alignment properties into the geometry. @@ -142,22 +278,19 @@ static int alignment_parse( char* align ) static void alignment_calculate( struct geometry_s *geometry ) { - geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5; - geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5; + geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2; + geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2; } /** Calculate the position for this frame. */ -static float position_calculate( mlt_transition this, mlt_frame frame ) +static float position_calculate( mlt_transition this, mlt_position position ) { // Get the in and out position mlt_position in = mlt_transition_get_in( this ); mlt_position out = mlt_transition_get_out( this ); - // Get the position of the frame - mlt_position position = mlt_frame_get_position( frame ); - // Now do the calcs return ( float )( position - in ) / ( float )( out - in + 1 ); } @@ -165,7 +298,7 @@ static float position_calculate( mlt_transition this, mlt_frame frame ) /** Calculate the field delta for this frame - position between two frames. */ -static float delta_calculate( mlt_transition this, mlt_frame frame ) +static inline float delta_calculate( mlt_transition this, mlt_frame frame ) { // Get the in and out position mlt_position in = mlt_transition_get_in( this ); @@ -176,8 +309,7 @@ static float delta_calculate( mlt_transition this, mlt_frame frame ) // Now do the calcs float x = ( float )( position - in ) / ( float )( out - in + 1 ); - position++; - float y = ( float )( position - in ) / ( float )( out - in + 1 ); + float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 ); return ( y - x ) / 2.0; } @@ -190,23 +322,183 @@ static int get_value( mlt_properties properties, char *preferred, char *fallback return value; } +/** A linear threshold determination function. +*/ + +static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a ) +{ + if ( a < edge1 ) + return 0; + + if ( a >= edge2 ) + return 0x10000; + + return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 ); +} + +/** A smoother, non-linear threshold determination function. +*/ + +static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a ) +{ + if ( a < edge1 ) + return 0; + + if ( a >= edge2 ) + return 0x10000; + + a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 ); + + return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16; +} + +/** Load the luma map from PGM stream. +*/ + +static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height ) +{ + uint8_t *data = NULL; + while (1) + { + char line[128]; + char comment[128]; + int i = 2; + int maxval; + int bpp; + uint16_t *p; + + line[127] = '\0'; + + // get the magic code + if ( fgets( line, 127, f ) == NULL ) + break; + + // skip comments + while ( sscanf( line, " #%s", comment ) > 0 ) + if ( fgets( line, 127, f ) == NULL ) + break; + + if ( line[0] != 'P' || line[1] != '5' ) + break; + + // skip white space and see if a new line must be fetched + for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ ); + if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL ) + break; + + // skip comments + while ( sscanf( line, " #%s", comment ) > 0 ) + if ( fgets( line, 127, f ) == NULL ) + break; + + // get the dimensions + if ( line[0] == 'P' ) + i = sscanf( line, "P5 %d %d %d", width, height, &maxval ); + else + i = sscanf( line, "%d %d %d", width, height, &maxval ); + + // get the height value, if not yet + if ( i < 2 ) + { + if ( fgets( line, 127, f ) == NULL ) + break; + + // skip comments + while ( sscanf( line, " #%s", comment ) > 0 ) + if ( fgets( line, 127, f ) == NULL ) + break; + + i = sscanf( line, "%d", height ); + if ( i == 0 ) + break; + else + i = 2; + } + + // get the maximum gray value, if not yet + if ( i < 3 ) + { + if ( fgets( line, 127, f ) == NULL ) + break; + + // skip comments + while ( sscanf( line, " #%s", comment ) > 0 ) + if ( fgets( line, 127, f ) == NULL ) + break; + + i = sscanf( line, "%d", &maxval ); + if ( i == 0 ) + break; + } + + // determine if this is one or two bytes per pixel + bpp = maxval > 255 ? 2 : 1; + + // allocate temporary storage for the raw data + data = mlt_pool_alloc( *width * *height * bpp ); + if ( data == NULL ) + break; + + // read the raw data + if ( fread( data, *width * *height * bpp, 1, f ) != 1 ) + break; + + // allocate the luma bitmap + *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) ); + if ( *map == NULL ) + break; + + // proces the raw data into the luma bitmap + for ( i = 0; i < *width * *height * bpp; i += bpp ) + { + if ( bpp == 1 ) + *p++ = data[ i ] << 8; + else + *p++ = ( data[ i ] << 8 ) + data[ i + 1 ]; + } + + break; + } + + if ( data != NULL ) + mlt_pool_release( data ); +} + +/** Generate a luma map from any YUV image. +*/ + +static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height ) +{ + int i; + + // allocate the luma bitmap + uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) ); + if ( *map == NULL ) + return; + + // proces the image data into the luma bitmap + for ( i = 0; i < width * height * 2; i += 2 ) + *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219 +} + /** Composite function. */ -static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field ) +static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness ) { int ret = 0; int i, j; int x_src = 0, y_src = 0; - float weight = geometry.mix / 100; - int stride_src = width_src * 2; - int stride_dest = width_dest * 2; + int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 ); + int stride_src = width_src * bpp; + int stride_dest = width_dest * bpp; // Adjust to consumer scale - int x = geometry.x * width_dest / geometry.nw + 0.5; - int y = geometry.y * height_dest / geometry.nh + 0.5; + int x = geometry.x * width_dest / geometry.nw; + int y = geometry.y * height_dest / geometry.nh; - x -= x % 2; + x &= 0xfffffffe; + width_src &= 0xfffffffe; // optimization points - no work to do if ( width_src <= 0 || height_src <= 0 ) @@ -238,22 +530,27 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint height_src = height_dest - y; // offset pointer into overlay buffer based on cropping - p_src += x_src * 2 + y_src * stride_src; + p_src += x_src * bpp + y_src * stride_src; - // offset pointer into frame buffer based upon positive, even coordinates only! - p_dest += ( x < 0 ? 0 : x ) * 2 + ( y < 0 ? 0 : y ) * stride_dest; + // offset pointer into frame buffer based upon positive coordinates only! + p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest; // offset pointer into alpha channel based upon cropping if ( p_alpha ) - p_alpha += x_src + y_src * stride_src / 2; + p_alpha += x_src + y_src * stride_src / bpp; + // offset pointer into luma channel based upon cropping + if ( p_luma ) + p_luma += x_src + y_src * stride_src / bpp; + // Assuming lower field first // Special care is taken to make sure the b_frame is aligned to the correct field. // field 0 = lower field and y should be odd (y is 0-based). // field 1 = upper field and y should be even. if ( ( field > -1 ) && ( y % 2 == field ) ) { - if ( y == 0 ) + //fprintf( stderr, "field %d y %d\n", field, y ); + if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) ) p_dest += stride_dest; else p_dest -= stride_dest; @@ -264,63 +561,194 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint { p_src += stride_src; if ( p_alpha ) - p_alpha += stride_src / 2; + p_alpha += stride_src / bpp; height_src--; } uint8_t *p = p_src; uint8_t *q = p_dest; uint8_t *o = p_dest; + uint16_t *l = p_luma; uint8_t *z = p_alpha; - uint8_t Y; - uint8_t UV; uint8_t a; - float value; + int32_t current_weight; + int32_t value; int step = ( field > -1 ) ? 2 : 1; + stride_src = stride_src * step; + int alpha_stride = stride_src / bpp; + stride_dest = stride_dest * step; + // now do the compositing only to cropped extents for ( i = 0; i < height_src; i += step ) { - p = &p_src[ i * stride_src ]; - q = &p_dest[ i * stride_dest ]; - o = &p_dest[ i * stride_dest ]; - if ( p_alpha ) - z = &p_alpha[ i * stride_src / 2 ]; + p = p_src; + q = p_dest; + o = q; + l = p_luma; + z = p_alpha; for ( j = 0; j < width_src; j ++ ) { - Y = *p ++; - UV = *p ++; a = ( z == NULL ) ? 255 : *z ++; - value = ( weight * ( float ) a / 255.0 ); - *o ++ = (uint8_t)( Y * value + *q++ * ( 1 - value ) ); - *o ++ = (uint8_t)( UV * value + *q++ * ( 1 - value ) ); + current_weight = ( l == NULL ) ? weight : linearstep( l[ j ], l[ j ] + softness, weight ); + value = ( current_weight * ( a + 1 ) ) >> 8; + *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16; + *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16; } + + p_src += stride_src; + p_dest += stride_dest; + if ( p_alpha ) + p_alpha += alpha_stride; + if ( p_luma ) + p_luma += alpha_stride; } return ret; } +/** Scale 16bit greyscale luma map using nearest neighbor. +*/ + +static inline void +scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height ) +{ + register int i, j; + register int x_step = ( src_width << 16 ) / dest_width; + register int y_step = ( src_height << 16 ) / dest_height; + register int x, y = 0; + + for ( i = 0; i < dest_height; i++ ) + { + const uint16_t *src = src_buf + ( y >> 16 ) * src_width; + x = 0; + + for ( j = 0; j < dest_width; j++ ) + { + *dest_buf++ = src[ x >> 16 ]; + x += x_step; + } + y += y_step; + } +} + +static uint16_t* get_luma( mlt_properties properties, int width, int height ) +{ + // The cached luma map information + int luma_width = mlt_properties_get_int( properties, "_luma.width" ); + int luma_height = mlt_properties_get_int( properties, "_luma.height" ); + uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL ); + + // If the filename property changed, reload the map + char *resource = mlt_properties_get( properties, "luma" ); + + if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) ) + { + uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL ); + luma_width = mlt_properties_get_int( properties, "_luma.orig_width" ); + luma_height = mlt_properties_get_int( properties, "_luma.orig_height" ); + + // Load the original luma once + if ( orig_bitmap == NULL ) + { + char *extension = extension = strrchr( resource, '.' ); + + // See if it is a PGM + if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 ) + { + // Open PGM + FILE *f = fopen( resource, "r" ); + if ( f != NULL ) + { + // Load from PGM + luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height ); + fclose( f ); + + // Remember the original size for subsequent scaling + mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL ); + mlt_properties_set_int( properties, "_luma.orig_width", luma_width ); + mlt_properties_set_int( properties, "_luma.orig_height", luma_height ); + } + } + else + { + // Get the factory producer service + char *factory = mlt_properties_get( properties, "factory" ); + + // Create the producer + mlt_producer producer = mlt_factory_producer( factory, resource ); + + // If we have one + if ( producer != NULL ) + { + // Get the producer properties + mlt_properties producer_properties = mlt_producer_properties( producer ); + + // Ensure that we loop + mlt_properties_set( producer_properties, "eof", "loop" ); + + // Now pass all producer. properties on the transition down + mlt_properties_pass( producer_properties, properties, "luma." ); + + // We will get the alpha frame from the producer + mlt_frame luma_frame = NULL; + + // Get the luma frame + if ( mlt_service_get_frame( mlt_producer_service( producer ), &luma_frame, 0 ) == 0 ) + { + uint8_t *luma_image; + mlt_image_format luma_format = mlt_image_yuv422; + + // Get image from the luma producer + mlt_properties_set( mlt_frame_properties( luma_frame ), "rescale.interp", "none" ); + mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 ); + + // Generate the luma map + if ( luma_image != NULL && luma_format == mlt_image_yuv422 ) + luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height ); + + // Remember the original size for subsequent scaling + mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL ); + mlt_properties_set_int( properties, "_luma.orig_width", luma_width ); + mlt_properties_set_int( properties, "_luma.orig_height", luma_height ); + + // Cleanup the luma frame + mlt_frame_close( luma_frame ); + } + + // Cleanup the luma producer + mlt_producer_close( producer ); + } + } + } + // Scale luma map + luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) ); + scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height ); + + // Remember the scaled luma size to prevent unnecessary scaling + mlt_properties_set_int( properties, "_luma.width", width ); + mlt_properties_set_int( properties, "_luma.height", height ); + mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL ); + } + return luma_bitmap; +} + /** Get the properly sized image from b_frame. */ -static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry ) +static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry ) { int ret = 0; mlt_image_format format = mlt_image_yuv422; - // Initialise the scaled dimensions from the computed - geometry->sw = geometry->w; - geometry->sh = geometry->h; - - // Compute the dimensioning rectangle + // Get the properties objects mlt_properties b_props = mlt_frame_properties( b_frame ); - mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL ); mlt_properties properties = mlt_transition_properties( this ); - if ( mlt_properties_get( properties, "distort" ) == NULL ) + if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 ) { // Adjust b_frame pixel aspect int normalised_width = geometry->w; @@ -329,28 +757,9 @@ static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, in int real_height = get_value( b_props, "real_height", "height" ); double input_ar = mlt_frame_get_aspect_ratio( b_frame ); double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" ); - //int scaled_width = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_width; - //int scaled_height = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_height; - int scaled_width = real_width; + int scaled_width = input_ar / output_ar * real_width; int scaled_height = real_height; - double output_sar = ( double ) geometry->nw / geometry->nh / output_ar; - - // We always normalise pixel aspect by requesting a larger than normal - // image in order to maximise usage of the bounding rectangle - - // These calcs are optimised by reducing factors in equations - if ( output_sar < 1.0 ) - // If the output is skinny pixels (PAL) then stretch our input vertically - // derived from: input_sar / output_sar * real_height - scaled_height = ( double )real_width / input_ar / output_sar; - - else - // If the output is fat pixels (NTSC) then stretch our input horizontally - // derived from: output_sar / input_sar * real_width - scaled_width = output_sar * real_height * input_ar; -// fprintf( stderr, "composite: real %dx%d scaled %dx%d normalised %dx%d\n", real_width, real_height, scaled_width, scaled_height, normalised_width, normalised_height ); - // Now ensure that our images fit in the normalised frame if ( scaled_width > normalised_width ) { @@ -363,20 +772,22 @@ static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, in scaled_height = normalised_height; } -#if 0 - // DRD> Why? - // Special case - if ( scaled_height == normalised_height ) - scaled_width = normalised_width; -#endif - - // Now we need to align to the geometry - if ( scaled_width <= geometry->w && scaled_height <= geometry->h ) + // Now apply the fill + // TODO: Should combine fill/distort in one property + if ( mlt_properties_get( properties, "fill" ) != NULL ) { - // Save the new scaled dimensions - geometry->sw = scaled_width; - geometry->sh = scaled_height; + scaled_width = ( geometry->w / scaled_width ) * scaled_width; + scaled_height = ( geometry->h / scaled_height ) * scaled_height; } + + // Save the new scaled dimensions + geometry->sw = scaled_width; + geometry->sh = scaled_height; + } + else + { + geometry->sw = geometry->w; + geometry->sh = geometry->h; } // We want to ensure that we bypass resize now... @@ -386,15 +797,13 @@ static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, in alignment_calculate( geometry ); // Adjust to consumer scale - int x = geometry->x * *width / geometry->nw + 0.5; - int y = geometry->y * *height / geometry->nh + 0.5; + int x = geometry->x * *width / geometry->nw; + int y = geometry->y * *height / geometry->nh; *width = geometry->sw * *width / geometry->nw; *height = geometry->sh * *height / geometry->nh; x -= x % 2; - //fprintf( stderr, "composite calculated %d,%d:%dx%d\n", x, y, *width, *height ); - // optimization points - no work to do if ( *width <= 0 || *height <= 0 ) return 1; @@ -402,12 +811,119 @@ static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, in if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) ) return 1; - ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 /* writable */ ); + ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 ); return ret; } +struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position ) +{ + // Get the properties from the transition + mlt_properties properties = mlt_transition_properties( this ); + + // Get the properties from the frame + mlt_properties a_props = mlt_frame_properties( a_frame ); + + // Structures for geometry + struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL ); + + // Now parse the geometries + if ( start == NULL ) + { + // Obtain the normalised width and height from the a_frame + int normalised_width = mlt_properties_get_int( a_props, "normalised_width" ); + int normalised_height = mlt_properties_get_int( a_props, "normalised_height" ); + + // Parse the transitions properties + start = transition_parse_keys( this, normalised_width, normalised_height ); + } + + // Do the calculation + geometry_calculate( result, start, position ); + + // Now parse the alignment + result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) ); + result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) ); + + return start; +} + +mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position ) +{ + // Create a frame to return + mlt_frame b_frame = mlt_frame_init( ); + + // Get the properties of the a frame + mlt_properties a_props = mlt_frame_properties( a_frame ); + + // Get the properties of the b frame + mlt_properties b_props = mlt_frame_properties( b_frame ); + + // Get the position + float position = position_calculate( this, frame_position ); + + // Destination image + uint8_t *dest = NULL; + + // Get the image and dimensions + uint8_t *image = mlt_properties_get_data( a_props, "image", NULL ); + int width = mlt_properties_get_int( a_props, "width" ); + int height = mlt_properties_get_int( a_props, "height" ); + + // Pointers for copy operation + uint8_t *p; + uint8_t *q; + uint8_t *r; + + // Corrdinates + int w = 0; + int h = 0; + int x = 0; + int y = 0; + + // Will need to know region to copy + struct geometry_s result; + + // Calculate the region now + composite_calculate( &result, this, a_frame, position ); + + // Need to scale down to actual dimensions + x = result.x * width / result.nw ; + y = result.y * height / result.nh; + w = result.w * width / result.nw; + h = result.h * height / result.nh; + + x &= 0xfffffffe; + w &= 0xfffffffe; + + // Now we need to create a new destination image + dest = mlt_pool_alloc( w * h * 2 ); + + // Copy the region of the image + p = image + y * width * 2 + x * 2; + q = dest; + r = dest + w * h * 2; + + while ( q < r ) + { + memcpy( q, p, w * 2 ); + q += w * 2; + p += width * 2; + } + + // Assign to the new frame + mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL ); + mlt_properties_set_int( b_props, "width", w ); + mlt_properties_set_int( b_props, "height", h ); + + // Assign this position to the b frame + mlt_frame_set_position( b_frame, frame_position ); + + // Return the frame + return b_frame; +} + /** Get the image. */ @@ -416,6 +932,9 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f // Get the b frame from the stack mlt_frame b_frame = mlt_frame_pop_frame( a_frame ); + // Get the transition from the a frame + mlt_transition this = mlt_frame_pop_service( a_frame ); + // This compositer is yuv422 only *format = mlt_image_yuv422; @@ -430,67 +949,59 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f // Get the properties of the b frame mlt_properties b_props = mlt_frame_properties( b_frame ); - // Get the transition from the b frame - mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL ); - // Get the properties from the transition mlt_properties properties = mlt_transition_properties( this ); // Structures for geometry struct geometry_s result; - struct geometry_s start; - struct geometry_s end; // Calculate the position - float position = position_calculate( this, a_frame ); + float position = mlt_properties_get_double( b_props, "relative_position" ); float delta = delta_calculate( this, a_frame ); - // Obtain the normalised width and height from the a_frame - int normalised_width = mlt_properties_get_int( a_props, "normalised_width" ); - int normalised_height = mlt_properties_get_int( a_props, "normalised_height" ); - - // Now parse the geometries - geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height ); - geometry_parse( &end, &start, mlt_properties_get( properties, "end" ), normalised_width, normalised_height ); - - // Now parse the alignment - result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) ); - result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) ); + // Do the calculation + struct geometry_s *start = composite_calculate( &result, this, a_frame, position ); + + // Optimisation - no compositing required + if ( result.mix == 0 || ( result.w == 0 && result.h == 0 ) ) + return 0; // Since we are the consumer of the b_frame, we must pass along these // consumer properties from the a_frame mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) ); - mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) ); - - // Do the calculation - geometry_calculate( &result, &start, &end, position ); // Get the image from the b frame - uint8_t *image_b; + uint8_t *image_b = NULL; int width_b = *width; int height_b = *height; - if ( get_b_frame_image( b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) + if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) { + uint8_t *dest = *image; + uint8_t *src = image_b; + int bpp = 2; uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame ); int progressive = mlt_properties_get_int( a_props, "progressive" ) || mlt_properties_get_int( a_props, "consumer_progressive" ) || mlt_properties_get_int( properties, "progressive" ); int field; + + int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 ); + uint16_t *luma_bitmap = get_luma( properties, width_b, height_b ); for ( field = 0; field < ( progressive ? 1 : 2 ); field++ ) { // Assume lower field (0) first float field_position = position + field * delta; - // Do the calculation - geometry_calculate( &result, &start, &end, field_position ); + // Do the calculation if we need to + geometry_calculate( &result, start, field_position ); // Align alignment_calculate( &result ); // Composite the b_frame on the a_frame - composite_yuv( *image, *width, *height, image_b, width_b, height_b, alpha, result, progressive ? -1 : field ); + composite_yuv( dest, *width, *height, bpp, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness ); } } } @@ -504,10 +1015,10 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame ) { // Propogate the transition properties to the b frame - mlt_properties b_props = mlt_frame_properties( b_frame ); - mlt_properties_set_data( b_props, "transition_composite", this, 0, NULL, NULL ); - mlt_frame_push_get_image( a_frame, transition_get_image ); + mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) ); + mlt_frame_push_service( a_frame, this ); mlt_frame_push_frame( a_frame, b_frame ); + mlt_frame_push_get_image( a_frame, transition_get_image ); return a_frame; } @@ -521,8 +1032,9 @@ mlt_transition transition_composite_init( char *arg ) { this->process = composite_process; mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" ); - mlt_properties_set( mlt_transition_properties( this ), "end", "" ); + + // Default factory + mlt_properties_set( mlt_transition_properties( this ), "factory", "fezzik" ); } return this; } -