X-Git-Url: http://research.m1stereo.tv/gitweb?a=blobdiff_plain;f=src%2Fmodules%2Fcore%2Ftransition_composite.c;h=2d4535cb6af0f5b7581d61113605fe4d9153d416;hb=5302781f73a3e9e099fc35b4d5d5807653c4062e;hp=4bd3d41ca3b84f5b133ae62a59ad9b74225b2b19;hpb=2cee5c4008cbbd4a12b2b85db3adc06717f22f67;p=melted diff --git a/src/modules/core/transition_composite.c b/src/modules/core/transition_composite.c index 4bd3d41..2d4535c 100644 --- a/src/modules/core/transition_composite.c +++ b/src/modules/core/transition_composite.c @@ -19,18 +19,28 @@ */ #include "transition_composite.h" -#include +#include #include #include #include #include +#include + +typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness ); + +/* mmx function declarations */ +#ifdef USE_MMX + void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness ); + int composite_have_mmx( void ); +#endif /** Geometry struct. */ struct geometry_s { + int frame; float position; float mix; int nw; // normalised width @@ -125,6 +135,14 @@ static void geometry_calculate( struct geometry_s *output, struct geometry_s *in // Search in for position struct geometry_s *out = in->next; + if ( position >= 1.0 ) + { + int section = floor( position ); + position -= section; + if ( section % 2 == 1 ) + position = 1.0 - position; + } + while ( out->next != NULL ) { if ( position >= in->position && position < out->position ) @@ -137,14 +155,130 @@ static void geometry_calculate( struct geometry_s *output, struct geometry_s *in position = ( position - in->position ) / ( out->position - in->position ); // Calculate this frames geometry - output->nw = in->nw; - output->nh = in->nh; - output->x = in->x + ( out->x - in->x ) * position + 0.5; - output->y = in->y + ( out->y - in->y ) * position + 0.5; - output->w = in->w + ( out->w - in->w ) * position; - output->h = in->h + ( out->h - in->h ) * position; - output->mix = in->mix + ( out->mix - in->mix ) * position; - output->distort = in->distort; + if ( in->frame != out->frame - 1 ) + { + output->nw = in->nw; + output->nh = in->nh; + output->x = in->x + ( out->x - in->x ) * position; + output->y = in->y + ( out->y - in->y ) * position; + output->w = in->w + ( out->w - in->w ) * position; + output->h = in->h + ( out->h - in->h ) * position; + output->mix = in->mix + ( out->mix - in->mix ) * position; + output->distort = in->distort; + } + else + { + output->nw = out->nw; + output->nh = out->nh; + output->x = out->x; + output->y = out->y; + output->w = out->w; + output->h = out->h; + output->mix = out->mix; + output->distort = out->distort; + } + + // DRD> These break on negative values. I do not think they are needed + // since yuv_composite takes care of YUYV group alignment + //output->x = ( int )floor( output->x ) & 0xfffffffe; + //output->w = ( int )floor( output->w ) & 0xfffffffe; + //output->sw &= 0xfffffffe; +} + +void transition_destroy_keys( void *arg ) +{ + struct geometry_s *ptr = arg; + struct geometry_s *next = NULL; + + while ( ptr != NULL ) + { + next = ptr->next; + free( ptr ); + ptr = next; + } +} + +static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height ) +{ + // Loop variable for property interrogation + int i = 0; + + // Get the properties of the transition + mlt_properties properties = mlt_transition_properties( this ); + + // Get the in and out position + mlt_position in = mlt_transition_get_in( this ); + mlt_position out = mlt_transition_get_out( this ); + + // Create the start + struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) ); + + // Create the end (we always need two entries) + struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) ); + + // Pointer + struct geometry_s *ptr = start; + + // Parse the start property + geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height ); + + // Parse the keys in between + for ( i = 0; i < mlt_properties_count( properties ); i ++ ) + { + // Get the name of the property + char *name = mlt_properties_get_name( properties, i ); + + // Check that it's valid + if ( !strncmp( name, "key[", 4 ) ) + { + // Get the value of the property + char *value = mlt_properties_get_value( properties, i ); + + // Determine the frame number + int frame = atoi( name + 4 ); + + // Determine the position + float position = 0; + + if ( frame >= 0 && frame < ( out - in ) ) + position = ( float )frame / ( float )( out - in + 1 ); + else if ( frame < 0 && - frame < ( out - in ) ) + position = ( float )( out - in + frame ) / ( float )( out - in + 1 ); + + // For now, we'll exclude all keys received out of order + if ( position > ptr->position ) + { + // Create a new geometry + struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) ); + + // Parse and add to the list + geometry_parse( temp, ptr, value, normalised_width, normalised_height ); + + // Assign the position and frame + temp->frame = frame; + temp->position = position; + + // Allow the next to be appended after this one + ptr = temp; + } + else + { + fprintf( stderr, "Key out of order - skipping %s\n", name ); + } + } + } + + // Parse the end + geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height ); + if ( out > 0 ) + end->position = ( float )( out - in ) / ( float )( out - in + 1 ); + else + end->position = 1; + + // Assign to properties to ensure we get destroyed + mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL ); + + return start; } /** Parse the alignment properties into the geometry. @@ -170,22 +304,19 @@ static int alignment_parse( char* align ) static void alignment_calculate( struct geometry_s *geometry ) { - geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5; - geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5; + geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2; + geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2; } /** Calculate the position for this frame. */ -static inline float position_calculate( mlt_transition this, mlt_frame frame ) +static float position_calculate( mlt_transition this, mlt_position position ) { // Get the in and out position mlt_position in = mlt_transition_get_in( this ); mlt_position out = mlt_transition_get_out( this ); - // Get the position - mlt_position position = mlt_frame_get_position( frame ); - // Now do the calcs return ( float )( position - in ) / ( float )( out - in + 1 ); } @@ -200,7 +331,8 @@ static inline float delta_calculate( mlt_transition this, mlt_frame frame ) mlt_position out = mlt_transition_get_out( this ); // Get the position of the frame - mlt_position position = mlt_frame_get_position( frame ); + char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" ); + mlt_position position = mlt_properties_get_position( mlt_frame_properties( frame ), name ); // Now do the calcs float x = ( float )( position - in ) / ( float )( out - in + 1 ); @@ -217,25 +349,209 @@ static int get_value( mlt_properties properties, char *preferred, char *fallback return value; } +/** A linear threshold determination function. +*/ + +static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a ) +{ + if ( a < edge1 ) + return 0; + + if ( a >= edge2 ) + return 0x10000; + + return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 ); +} + +/** A smoother, non-linear threshold determination function. +*/ + +static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a ) +{ + if ( a < edge1 ) + return 0; + + if ( a >= edge2 ) + return 0x10000; + + a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 ); + + return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16; +} + +/** Load the luma map from PGM stream. +*/ + +static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height ) +{ + uint8_t *data = NULL; + while (1) + { + char line[128]; + char comment[128]; + int i = 2; + int maxval; + int bpp; + uint16_t *p; + + line[127] = '\0'; + + // get the magic code + if ( fgets( line, 127, f ) == NULL ) + break; + + // skip comments + while ( sscanf( line, " #%s", comment ) > 0 ) + if ( fgets( line, 127, f ) == NULL ) + break; + + if ( line[0] != 'P' || line[1] != '5' ) + break; + + // skip white space and see if a new line must be fetched + for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ ); + if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL ) + break; + + // skip comments + while ( sscanf( line, " #%s", comment ) > 0 ) + if ( fgets( line, 127, f ) == NULL ) + break; + + // get the dimensions + if ( line[0] == 'P' ) + i = sscanf( line, "P5 %d %d %d", width, height, &maxval ); + else + i = sscanf( line, "%d %d %d", width, height, &maxval ); + + // get the height value, if not yet + if ( i < 2 ) + { + if ( fgets( line, 127, f ) == NULL ) + break; + + // skip comments + while ( sscanf( line, " #%s", comment ) > 0 ) + if ( fgets( line, 127, f ) == NULL ) + break; + + i = sscanf( line, "%d", height ); + if ( i == 0 ) + break; + else + i = 2; + } + + // get the maximum gray value, if not yet + if ( i < 3 ) + { + if ( fgets( line, 127, f ) == NULL ) + break; + + // skip comments + while ( sscanf( line, " #%s", comment ) > 0 ) + if ( fgets( line, 127, f ) == NULL ) + break; + + i = sscanf( line, "%d", &maxval ); + if ( i == 0 ) + break; + } + + // determine if this is one or two bytes per pixel + bpp = maxval > 255 ? 2 : 1; + + // allocate temporary storage for the raw data + data = mlt_pool_alloc( *width * *height * bpp ); + if ( data == NULL ) + break; + + // read the raw data + if ( fread( data, *width * *height * bpp, 1, f ) != 1 ) + break; + + // allocate the luma bitmap + *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) ); + if ( *map == NULL ) + break; + + // proces the raw data into the luma bitmap + for ( i = 0; i < *width * *height * bpp; i += bpp ) + { + if ( bpp == 1 ) + *p++ = data[ i ] << 8; + else + *p++ = ( data[ i ] << 8 ) + data[ i + 1 ]; + } + + break; + } + + if ( data != NULL ) + mlt_pool_release( data ); +} + +/** Generate a luma map from any YUV image. +*/ + +static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height ) +{ + int i; + + // allocate the luma bitmap + uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) ); + if ( *map == NULL ) + return; + + // proces the image data into the luma bitmap + for ( i = 0; i < width * height * 2; i += 2 ) + *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219 +} + + +/** Composite a source line over a destination line +*/ + +static inline +void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness ) +{ + register int j; + int a, mix; + + for ( j = 0; j < width_src; j ++ ) + { + a = ( alpha == NULL ) ? 255 : *alpha ++; + mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight ); + mix = ( mix * ( a + 1 ) ) >> 8; + *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16; + dest++; + *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16; + dest++; + } +} + /** Composite function. */ -static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field ) +static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn ) { int ret = 0; - int i, j; + int i; int x_src = 0, y_src = 0; int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 ); + int step = ( field > -1 ) ? 2 : 1; + int bpp = 2; int stride_src = width_src * bpp; int stride_dest = width_dest * bpp; - + // Adjust to consumer scale - int x = geometry.x * width_dest / geometry.nw + 0.5; - int y = geometry.y * height_dest / geometry.nh + 0.5; + int x = geometry.x * width_dest / geometry.nw; + int y = geometry.y * height_dest / geometry.nh; + + // Align x to a full YUYV group + x &= 0xfffffffe; + width_src &= 0xfffffffe; - if ( bpp == 2 ) - x -= x % 2; - // optimization points - no work to do if ( width_src <= 0 || height_src <= 0 ) return ret; @@ -252,7 +568,7 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int } // crop overlay beyond right edge of frame - else if ( x + width_src > width_dest ) + if ( x + width_src > width_dest ) width_src = width_dest - x; // crop overlay off the top edge of the frame @@ -261,8 +577,9 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int y_src = -y; height_src -= y_src; } + // crop overlay below bottom edge of frame - else if ( y + height_src > height_dest ) + if ( y + height_src > height_dest ) height_src = height_dest - y; // offset pointer into overlay buffer based on cropping @@ -275,6 +592,10 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int if ( p_alpha ) p_alpha += x_src + y_src * stride_src / bpp; + // offset pointer into luma channel based upon cropping + if ( p_luma ) + p_luma += x_src + y_src * stride_src / bpp; + // Assuming lower field first // Special care is taken to make sure the b_frame is aligned to the correct field. // field 0 = lower field and y should be odd (y is 0-based). @@ -297,45 +618,170 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int height_src--; } - uint8_t *p = p_src; - uint8_t *q = p_dest; - uint8_t *o = p_dest; - uint8_t *z = p_alpha; - - uint8_t a; - int32_t value; - int step = ( field > -1 ) ? 2 : 1; - - stride_src = stride_src * step; + stride_src *= step; + stride_dest *= step; int alpha_stride = stride_src / bpp; - stride_dest = stride_dest * step; // now do the compositing only to cropped extents - for ( i = 0; i < height_src; i += step ) + if ( line_fn != NULL ) { - p = p_src; - q = p_dest; - o = q; - z = p_alpha; - - for ( j = 0; j < width_src; j ++ ) + for ( i = 0; i < height_src; i += step ) + { + line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness ); + + p_src += stride_src; + p_dest += stride_dest; + if ( p_alpha ) + p_alpha += alpha_stride; + if ( p_luma ) + p_luma += alpha_stride; + } + } + else + { + for ( i = 0; i < height_src; i += step ) { - a = ( z == NULL ) ? 255 : *z ++; - value = ( weight * ( a + 1 ) ) >> 8; - *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16; - *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16; + composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness ); + + p_src += stride_src; + p_dest += stride_dest; + if ( p_alpha ) + p_alpha += alpha_stride; + if ( p_luma ) + p_luma += alpha_stride; } - - p_src += stride_src; - p_dest += stride_dest; - if ( p_alpha ) - p_alpha += alpha_stride; } return ret; } +/** Scale 16bit greyscale luma map using nearest neighbor. +*/ + +static inline void +scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height ) +{ + register int i, j; + register int x_step = ( src_width << 16 ) / dest_width; + register int y_step = ( src_height << 16 ) / dest_height; + register int x, y = 0; + + for ( i = 0; i < dest_height; i++ ) + { + const uint16_t *src = src_buf + ( y >> 16 ) * src_width; + x = 0; + + for ( j = 0; j < dest_width; j++ ) + { + *dest_buf++ = src[ x >> 16 ]; + x += x_step; + } + y += y_step; + } +} + +static uint16_t* get_luma( mlt_properties properties, int width, int height ) +{ + // The cached luma map information + int luma_width = mlt_properties_get_int( properties, "_luma.width" ); + int luma_height = mlt_properties_get_int( properties, "_luma.height" ); + uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL ); + + // If the filename property changed, reload the map + char *resource = mlt_properties_get( properties, "luma" ); + + if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) ) + { + uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL ); + luma_width = mlt_properties_get_int( properties, "_luma.orig_width" ); + luma_height = mlt_properties_get_int( properties, "_luma.orig_height" ); + + // Load the original luma once + if ( orig_bitmap == NULL ) + { + char *extension = extension = strrchr( resource, '.' ); + + // See if it is a PGM + if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 ) + { + // Open PGM + FILE *f = fopen( resource, "r" ); + if ( f != NULL ) + { + // Load from PGM + luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height ); + fclose( f ); + + // Remember the original size for subsequent scaling + mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL ); + mlt_properties_set_int( properties, "_luma.orig_width", luma_width ); + mlt_properties_set_int( properties, "_luma.orig_height", luma_height ); + } + } + else + { + // Get the factory producer service + char *factory = mlt_properties_get( properties, "factory" ); + + // Create the producer + mlt_producer producer = mlt_factory_producer( factory, resource ); + + // If we have one + if ( producer != NULL ) + { + // Get the producer properties + mlt_properties producer_properties = mlt_producer_properties( producer ); + + // Ensure that we loop + mlt_properties_set( producer_properties, "eof", "loop" ); + + // Now pass all producer. properties on the transition down + mlt_properties_pass( producer_properties, properties, "luma." ); + + // We will get the alpha frame from the producer + mlt_frame luma_frame = NULL; + + // Get the luma frame + if ( mlt_service_get_frame( mlt_producer_service( producer ), &luma_frame, 0 ) == 0 ) + { + uint8_t *luma_image; + mlt_image_format luma_format = mlt_image_yuv422; + + // Get image from the luma producer + mlt_properties_set( mlt_frame_properties( luma_frame ), "rescale.interp", "none" ); + mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 ); + + // Generate the luma map + if ( luma_image != NULL && luma_format == mlt_image_yuv422 ) + luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height ); + + // Remember the original size for subsequent scaling + mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL ); + mlt_properties_set_int( properties, "_luma.orig_width", luma_width ); + mlt_properties_set_int( properties, "_luma.orig_height", luma_height ); + + // Cleanup the luma frame + mlt_frame_close( luma_frame ); + } + + // Cleanup the luma producer + mlt_producer_close( producer ); + } + } + } + // Scale luma map + luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) ); + scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height ); + + // Remember the scaled luma size to prevent unnecessary scaling + mlt_properties_set_int( properties, "_luma.width", width ); + mlt_properties_set_int( properties, "_luma.height", height ); + mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL ); + } + return luma_bitmap; +} + /** Get the properly sized image from b_frame. */ @@ -344,11 +790,7 @@ static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t ** int ret = 0; mlt_image_format format = mlt_image_yuv422; - // Initialise the scaled dimensions from the computed - geometry->sw = geometry->w; - geometry->sh = geometry->h; - - // Compute the dimensioning rectangle + // Get the properties objects mlt_properties b_props = mlt_frame_properties( b_frame ); mlt_properties properties = mlt_transition_properties( this ); @@ -359,9 +801,11 @@ static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t ** int normalised_height = geometry->h; int real_width = get_value( b_props, "real_width", "width" ); int real_height = get_value( b_props, "real_height", "height" ); - int scaled_width = real_width; + double input_ar = mlt_frame_get_aspect_ratio( b_frame ); + double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" ); + int scaled_width = input_ar / output_ar * real_width; int scaled_height = real_height; - + // Now ensure that our images fit in the normalised frame if ( scaled_width > normalised_width ) { @@ -374,13 +818,22 @@ static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t ** scaled_height = normalised_height; } - // Now we need to align to the geometry - if ( scaled_width <= geometry->w && scaled_height <= geometry->h ) + // Now apply the fill + // TODO: Should combine fill/distort in one property + if ( mlt_properties_get( properties, "fill" ) != NULL ) { - // Save the new scaled dimensions - geometry->sw = scaled_width; - geometry->sh = scaled_height; + scaled_width = ( geometry->w / scaled_width ) * scaled_width; + scaled_height = ( geometry->h / scaled_height ) * scaled_height; } + + // Save the new scaled dimensions + geometry->sw = scaled_width; + geometry->sh = scaled_height; + } + else + { + geometry->sw = geometry->w; + geometry->sh = geometry->h; } // We want to ensure that we bypass resize now... @@ -390,15 +843,15 @@ static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t ** alignment_calculate( geometry ); // Adjust to consumer scale - int x = geometry->x * *width / geometry->nw + 0.5; - int y = geometry->y * *height / geometry->nh + 0.5; + int x = geometry->x * *width / geometry->nw; + int y = geometry->y * *height / geometry->nh; *width = geometry->sw * *width / geometry->nw; *height = geometry->sh * *height / geometry->nh; - x -= x % 2; + x &= 0xfffffffe; // optimization points - no work to do - if ( *width <= 0 || *height <= 0 ) + if ( *width < 1 || *height < 1 ) return 1; if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) ) @@ -410,105 +863,111 @@ static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t ** } -static uint8_t *transition_get_alpha_mask( mlt_frame this ) +struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position ) { - // Obtain properties of frame - mlt_properties properties = mlt_frame_properties( this ); - - // Return the alpha mask - return mlt_properties_get_data( properties, "alpha", NULL ); -} + // Get the properties from the transition + mlt_properties properties = mlt_transition_properties( this ); -void transition_destroy_keys( void *arg ) -{ - struct geometry_s *ptr = arg; - struct geometry_s *next = NULL; + // Get the properties from the frame + mlt_properties a_props = mlt_frame_properties( a_frame ); + + // Structures for geometry + struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL ); - while ( ptr != NULL ) + // Now parse the geometries + if ( start == NULL ) { - next = ptr->next; - free( ptr ); - ptr = next; + // Obtain the normalised width and height from the a_frame + int normalised_width = mlt_properties_get_int( a_props, "normalised_width" ); + int normalised_height = mlt_properties_get_int( a_props, "normalised_height" ); + + // Parse the transitions properties + start = transition_parse_keys( this, normalised_width, normalised_height ); } + + // Do the calculation + geometry_calculate( result, start, position ); + + // Now parse the alignment + result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) ); + result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) ); + + return start; } -static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height ) +mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position ) { - // Loop variable for property interrogation - int i = 0; + // Create a frame to return + mlt_frame b_frame = mlt_frame_init( ); - // Get the properties of the transition - mlt_properties properties = mlt_transition_properties( this ); + // Get the properties of the a frame + mlt_properties a_props = mlt_frame_properties( a_frame ); - // Get the in and out position - mlt_position in = mlt_transition_get_in( this ); - mlt_position out = mlt_transition_get_out( this ); + // Get the properties of the b frame + mlt_properties b_props = mlt_frame_properties( b_frame ); - // Create the start - struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) ); + // Get the position + float position = position_calculate( this, frame_position ); - // Create the end (we always need two entries) - struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) ); + // Destination image + uint8_t *dest = NULL; - // Pointer - struct geometry_s *ptr = start; + // Get the image and dimensions + uint8_t *image = mlt_properties_get_data( a_props, "image", NULL ); + int width = mlt_properties_get_int( a_props, "width" ); + int height = mlt_properties_get_int( a_props, "height" ); - // Parse the start property - geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height ); + // Pointers for copy operation + uint8_t *p; + uint8_t *q; + uint8_t *r; - // Parse the keys in between - for ( i = 0; i < mlt_properties_count( properties ); i ++ ) - { - // Get the name of the property - char *name = mlt_properties_get_name( properties, i ); + // Corrdinates + int w = 0; + int h = 0; + int x = 0; + int y = 0; - // Check that it's valid - if ( !strncmp( name, "key[", 4 ) ) - { - // Get the value of the property - char *value = mlt_properties_get_value( properties, i ); + // Will need to know region to copy + struct geometry_s result; - // Determine the frame number - int frame = atoi( name + 4 ); + // Calculate the region now + composite_calculate( &result, this, a_frame, position ); - // Determine the position - float position = 0; - - if ( frame >= 0 && frame < ( out - in ) ) - position = ( float )frame / ( float )( out - in + 1 ); - else if ( frame < 0 && - frame < ( out - in ) ) - position = ( float )( out - in + frame ) / ( float )( out - in + 1 ); + // Need to scale down to actual dimensions + x = result.x * width / result.nw ; + y = result.y * height / result.nh; + w = result.w * width / result.nw; + h = result.h * height / result.nh; - // For now, we'll exclude all keys received out of order - if ( position > ptr->position ) - { - // Create a new geometry - struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) ); + x &= 0xfffffffe; + //w &= 0xfffffffe; - // Parse and add to the list - geometry_parse( temp, ptr, value, normalised_width, normalised_height ); + // Now we need to create a new destination image + dest = mlt_pool_alloc( w * h * 2 ); - // Assign the position - temp->position = position; + // Copy the region of the image + p = image + y * width * 2 + x * 2; + q = dest; + r = dest + w * h * 2; - // Allow the next to be appended after this one - ptr = temp; - } - else - { - fprintf( stderr, "Key out of order - skipping %s\n", name ); - } - } + while ( q < r ) + { + memcpy( q, p, w * 2 ); + q += w * 2; + p += width * 2; } - - // Parse the end - geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height ); - end->position = ( float )( out - in ) / ( float )( out - in + 1 ); - // Assign to properties to ensure we get destroyed - mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL ); + // Assign to the new frame + mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL ); + mlt_properties_set_int( b_props, "width", w ); + mlt_properties_set_int( b_props, "height", h ); - return start; + // Assign this position to the b frame + mlt_frame_set_position( b_frame, frame_position ); + + // Return the frame + return b_frame; } /** Get the image. @@ -519,15 +978,18 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f // Get the b frame from the stack mlt_frame b_frame = mlt_frame_pop_frame( a_frame ); - // This compositer is yuv422 only - *format = mlt_image_yuv422; - // Get the transition from the a frame mlt_transition this = mlt_frame_pop_service( a_frame ); + // This compositer is yuv422 only + *format = mlt_image_yuv422; + // Get the image from the a frame mlt_frame_get_image( a_frame, image, format, width, height, 1 ); + // Get the properties from the transition + mlt_properties properties = mlt_transition_properties( this ); + if ( b_frame != NULL ) { // Get the properties of the a frame @@ -536,42 +998,26 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f // Get the properties of the b frame mlt_properties b_props = mlt_frame_properties( b_frame ); - // Get the properties from the transition - mlt_properties properties = mlt_transition_properties( this ); - // Structures for geometry struct geometry_s result; - struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL ); // Calculate the position float position = mlt_properties_get_double( b_props, "relative_position" ); float delta = delta_calculate( this, a_frame ); - // Now parse the geometries - if ( start == NULL ) - { - // Obtain the normalised width and height from the a_frame - int normalised_width = mlt_properties_get_int( a_props, "normalised_width" ); - int normalised_height = mlt_properties_get_int( a_props, "normalised_height" ); - - // Parse the transitions properties - start = transition_parse_keys( this, normalised_width, normalised_height ); - } + // Do the calculation + struct geometry_s *start = composite_calculate( &result, this, a_frame, position ); + + // Optimisation - no compositing required + if ( result.mix == 0 || ( result.w == 0 && result.h == 0 ) ) + return 0; // Since we are the consumer of the b_frame, we must pass along these // consumer properties from the a_frame mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) ); - mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) ); - - // Do the calculation - geometry_calculate( &result, start, position ); - - // Now parse the alignment - result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) ); - result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) ); // Get the image from the b frame - uint8_t *image_b; + uint8_t *image_b = NULL; int width_b = *width; int height_b = *height; @@ -579,12 +1025,16 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f { uint8_t *dest = *image; uint8_t *src = image_b; - int bpp = 2; uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame ); - int progressive = mlt_properties_get_int( a_props, "progressive" ) || + int progressive = mlt_properties_get_int( a_props, "consumer_progressive" ) || mlt_properties_get_int( properties, "progressive" ); int field; + + int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 ); + uint16_t *luma_bitmap = get_luma( properties, width_b, height_b ); + //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL; + composite_line_fn line_fn = NULL; for ( field = 0; field < ( progressive ? 1 : 2 ); field++ ) { @@ -598,11 +1048,14 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f alignment_calculate( &result ); // Composite the b_frame on the a_frame - composite_yuv( dest, *width, *height, bpp, src, width_b, height_b, alpha, result, progressive ? -1 : field ); + composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn ); } } } + // Force geometries to be recalculated + mlt_properties_set_data( properties, "geometries", NULL, 0, NULL, NULL ); + return 0; } @@ -611,11 +1064,18 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame ) { + // Get a unique name to store the frame position + char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" ); + + // Assign the current position to the name + mlt_properties_set_position( mlt_frame_properties( a_frame ), name, mlt_frame_get_position( a_frame ) ); + // Propogate the transition properties to the b frame - mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, a_frame ) ); + mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) ); + mlt_frame_push_service( a_frame, this ); - mlt_frame_push_get_image( a_frame, transition_get_image ); mlt_frame_push_frame( a_frame, b_frame ); + mlt_frame_push_get_image( a_frame, transition_get_image ); return a_frame; } @@ -627,9 +1087,19 @@ mlt_transition transition_composite_init( char *arg ) mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 ); if ( this != NULL && mlt_transition_init( this, NULL ) == 0 ) { + mlt_properties properties = mlt_transition_properties( this ); + this->process = composite_process; - mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" ); + + // Default starting motion and zoom + mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" ); + + // Default factory + mlt_properties_set( properties, "factory", "fezzik" ); + +#ifdef USE_MMX + //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() ); +#endif } return this; } -