composite alignment fix
[melted] / src / modules / core / transition_composite.c
index 2cec6a6..f3695d2 100644 (file)
 
 #include <stdio.h>
 #include <stdlib.h>
+#include <ctype.h>
+#include <string.h>
+#include <math.h>
 
 /** Geometry struct.
 */
 
 struct geometry_s
 {
-       int nw;
-       int nh;
+       float position;
+       float mix;
+       int nw; // normalised width
+       int nh; // normalised height
+       int sw; // scaled width, not including consumer scale based upon w/nw
+       int sh; // scaled height, not including consumer scale based upon h/nh
        float x;
        float y;
        float w;
        float h;
-       float mix;
+       int halign; // horizontal alignment: 0=left, 1=center, 2=right
+       int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
+       int distort;
+       struct geometry_s *next;
 };
 
 /** Parse a value from a geometry string.
@@ -78,9 +88,11 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa
        {
                geometry->x = defaults->x;
                geometry->y = defaults->y;
-               geometry->w = defaults->w;
-               geometry->h = defaults->h;
+               geometry->w = geometry->sw = defaults->w;
+               geometry->h = geometry->sh = defaults->h;
+               geometry->distort = defaults->distort;
                geometry->mix = defaults->mix;
+               defaults->next = geometry;
        }
        else
        {
@@ -88,13 +100,20 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa
        }
 
        // Parse the geomtry string
-       if ( property != NULL )
+       if ( property != NULL && strcmp( property, "" ) )
        {
                char *ptr = property;
                geometry->x = parse_value( &ptr, nw, ',', geometry->x );
                geometry->y = parse_value( &ptr, nh, ':', geometry->y );
-               geometry->w = parse_value( &ptr, nw, 'x', geometry->w );
-               geometry->h = parse_value( &ptr, nh, ':', geometry->h );
+               geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
+               geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
+               if ( *ptr == '!' )
+               {
+                       geometry->distort = 1;
+                       ptr ++;
+                       if ( *ptr == ':' )
+                               ptr ++;
+               }
                geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
        }
 }
@@ -102,34 +121,198 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa
 /** Calculate real geometry.
 */
 
-static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, struct geometry_s *out, float position )
+static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
 {
+       // Search in for position
+       struct geometry_s *out = in->next;
+
+       if ( position >= 1.0 )
+       {
+               int section = floor( position );
+               position -= section;
+               if ( section % 2 == 1 )
+                       position = 1.0 - position;
+       }
+
+       while ( out->next != NULL )
+       {
+               if ( position >= in->position && position < out->position )
+                       break;
+
+               in = out;
+               out = in->next;
+       }
+
+       position = ( position - in->position ) / ( out->position - in->position );
+
        // Calculate this frames geometry
        output->nw = in->nw;
        output->nh = in->nh;
-       output->x = in->x + ( out->x - in->x ) * position;
-       output->y = in->y + ( out->y - in->y ) * position;
+       output->x = in->x + ( out->x - in->x ) * position + 0.5;
+       output->y = in->y + ( out->y - in->y ) * position + 0.5;
        output->w = in->w + ( out->w - in->w ) * position;
        output->h = in->h + ( out->h - in->h ) * position;
        output->mix = in->mix + ( out->mix - in->mix ) * position;
+       output->distort = in->distort;
+}
+
+void transition_destroy_keys( void *arg )
+{
+       struct geometry_s *ptr = arg;
+       struct geometry_s *next = NULL;
+
+       while ( ptr != NULL )
+       {
+               next = ptr->next;
+               free( ptr );
+               ptr = next;
+       }
+}
+
+static struct geometry_s *transition_parse_keys( mlt_transition this,  int normalised_width, int normalised_height )
+{
+       // Loop variable for property interrogation
+       int i = 0;
+
+       // Get the properties of the transition
+       mlt_properties properties = mlt_transition_properties( this );
+
+       // Get the in and out position
+       mlt_position in = mlt_transition_get_in( this );
+       mlt_position out = mlt_transition_get_out( this );
+
+       // Create the start
+       struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
+
+       // Create the end (we always need two entries)
+       struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
+
+       // Pointer
+       struct geometry_s *ptr = start;
+
+       // Parse the start property
+       geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
+
+       // Parse the keys in between
+       for ( i = 0; i < mlt_properties_count( properties ); i ++ )
+       {
+               // Get the name of the property
+               char *name = mlt_properties_get_name( properties, i );
+
+               // Check that it's valid
+               if ( !strncmp( name, "key[", 4 ) )
+               {
+                       // Get the value of the property
+                       char *value = mlt_properties_get_value( properties, i );
+
+                       // Determine the frame number
+                       int frame = atoi( name + 4 );
+
+                       // Determine the position
+                       float position = 0;
+                       
+                       if ( frame >= 0 && frame < ( out - in ) )
+                               position = ( float )frame / ( float )( out - in + 1 );
+                       else if ( frame < 0 && - frame < ( out - in ) )
+                               position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
+
+                       // For now, we'll exclude all keys received out of order
+                       if ( position > ptr->position )
+                       {
+                               // Create a new geometry
+                               struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
+
+                               // Parse and add to the list
+                               geometry_parse( temp, ptr, value, normalised_width, normalised_height );
+
+                               // Assign the position
+                               temp->position = position;
+
+                               // Allow the next to be appended after this one
+                               ptr = temp;
+                       }
+                       else
+                       {
+                               fprintf( stderr, "Key out of order - skipping %s\n", name );
+                       }
+               }
+       }
+       
+       // Parse the end
+       geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
+       if ( out > 0 )
+               end->position = ( float )( out - in ) / ( float )( out - in + 1 );
+       else
+               end->position = 1;
+
+       // Assign to properties to ensure we get destroyed
+       mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
+
+       return start;
+}
+
+/** Parse the alignment properties into the geometry.
+*/
+
+static int alignment_parse( char* align )
+{
+       int ret = 0;
+       
+       if ( align == NULL );
+       else if ( isdigit( align[ 0 ] ) )
+               ret = atoi( align );
+       else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
+               ret = 1;
+       else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
+               ret = 2;
+
+       return ret;
+}
+
+/** Adjust position according to scaled size and alignment properties.
+*/
+
+static void alignment_calculate( struct geometry_s *geometry )
+{
+       geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5;
+       geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5;
 }
 
 /** Calculate the position for this frame.
 */
 
-static float position_calculate( mlt_transition this, mlt_frame frame )
+static inline float position_calculate( mlt_transition this, mlt_frame frame )
 {
        // Get the in and out position
        mlt_position in = mlt_transition_get_in( this );
        mlt_position out = mlt_transition_get_out( this );
 
-       // Get the position of the frame
+       // Get the position
        mlt_position position = mlt_frame_get_position( frame );
 
        // Now do the calcs
        return ( float )( position - in ) / ( float )( out - in + 1 );
 }
 
+/** Calculate the field delta for this frame - position between two frames.
+*/
+
+static inline float delta_calculate( mlt_transition this, mlt_frame frame )
+{
+       // Get the in and out position
+       mlt_position in = mlt_transition_get_in( this );
+       mlt_position out = mlt_transition_get_out( this );
+
+       // Get the position of the frame
+       mlt_position position = mlt_frame_get_position( frame );
+
+       // Now do the calcs
+       float x = ( float )( position - in ) / ( float )( out - in + 1 );
+       float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
+
+       return ( y - x ) / 2.0;
+}
+
 static int get_value( mlt_properties properties, char *preferred, char *fallback )
 {
        int value = mlt_properties_get_int( properties, preferred );
@@ -141,83 +324,22 @@ static int get_value( mlt_properties properties, char *preferred, char *fallback
 /** Composite function.
 */
 
-static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int width_dest, int height_dest, mlt_frame that, struct geometry_s geometry )
+static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field )
 {
        int ret = 0;
-       uint8_t *p_src;
        int i, j;
-       int stride_src;
-       int stride_dest;
        int x_src = 0, y_src = 0;
+       int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
+       int stride_src = width_src * bpp;
+       int stride_dest = width_dest * bpp;
 
-       mlt_image_format format_src = format_dest;
-       float weight = geometry.mix / 100;
-
-       // Compute the dimensioning rectangle
-       mlt_properties b_props = mlt_frame_properties( that );
-       mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
-       mlt_properties properties = mlt_transition_properties( this );
-
-       if ( mlt_properties_get( properties, "distort" ) == NULL )
-       {
-               // Now do additional calcs based on real_width/height etc
-               //int normalised_width = mlt_properties_get_int( b_props, "normalised_width" );
-               //int normalised_height = mlt_properties_get_int( b_props, "normalised_height" );
-               int normalised_width = geometry.w;
-               int normalised_height = geometry.h;
-               int real_width = get_value( b_props, "real_width", "width" );
-               int real_height = get_value( b_props, "real_height", "height" );
-               double input_ar = mlt_frame_get_aspect_ratio( that );
-               double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
-               int scaled_width = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_width;
-               int scaled_height = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_height;
-
-               // Now ensure that our images fit in the normalised frame
-               if ( scaled_width > normalised_width )
-               {
-                       scaled_height = scaled_height * normalised_width / scaled_width;
-                       scaled_width = normalised_width;
-               }
-               if ( scaled_height > normalised_height )
-               {
-                       scaled_width = scaled_width * normalised_height / scaled_height;
-                       scaled_height = normalised_height;
-               }
-
-               // Special case 
-               if ( scaled_height == normalised_height )
-                       scaled_width = normalised_width;
-
-               // Now we need to align to the geometry
-               if ( scaled_width <= geometry.w && scaled_height <= geometry.h )
-               {
-                       // TODO: Should take into account requested alignment here...
-                       // Assume centred alignment for now
-                       
-                       geometry.x = geometry.x + ( geometry.w - scaled_width ) / 2;
-                       geometry.y = geometry.y + ( geometry.h - scaled_height ) / 2;
-                       geometry.w = scaled_width;
-                       geometry.h = scaled_height;
-                       mlt_properties_set( b_props, "distort", "true" );
-               }
-               else
-               {
-                       mlt_properties_set( b_props, "distort", "true" );
-               }
-       }
-       else
-       {
-               // We want to ensure that we bypass resize now...
-               mlt_properties_set( b_props, "distort", "true" );
-       }
-
-       int x = ( geometry.x * width_dest ) / geometry.nw;
-       int y = ( geometry.y * height_dest ) / geometry.nh;
-       int width_src = ( geometry.w * width_dest ) / geometry.nw;
-       int height_src = ( geometry.h * height_dest ) / geometry.nh;
-
-       x -= x % 2;
+       // Adjust to consumer scale
+       int x = geometry.x * width_dest / geometry.nw + 0.5;
+       int y = geometry.y * height_dest / geometry.nh + 0.5;
 
+       if ( bpp == 2 )
+               x -= x % 2;
+               
        // optimization points - no work to do
        if ( width_src <= 0 || height_src <= 0 )
                return ret;
@@ -225,14 +347,6 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid
        if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
                return ret;
 
-       format_src = mlt_image_yuv422;
-       format_dest = mlt_image_yuv422;
-
-       mlt_frame_get_image( that, &p_src, &format_src, &width_src, &height_src, 1 /* writable */ );
-
-       stride_src = width_src * 2;
-       stride_dest = width_dest * 2;
-       
        // crop overlay off the left edge of frame
        if ( x < 0 )
        {
@@ -256,56 +370,170 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid
                height_src = height_dest - y;
 
        // offset pointer into overlay buffer based on cropping
-       p_src += x_src * 2 + y_src * stride_src;
-
-       // offset pointer into frame buffer based upon positive, even coordinates only!
-       p_dest += ( x < 0 ? 0 : x ) * 2 + ( y < 0 ? 0 : y ) * stride_dest;
+       p_src += x_src * bpp + y_src * stride_src;
 
-       // Get the alpha channel of the overlay
-       uint8_t *p_alpha = mlt_frame_get_alpha_mask( that );
+       // offset pointer into frame buffer based upon positive coordinates only!
+       p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
 
        // offset pointer into alpha channel based upon cropping
        if ( p_alpha )
-               p_alpha += x_src + y_src * stride_src / 2;
+               p_alpha += x_src + y_src * stride_src / bpp;
+
+       // Assuming lower field first
+       // Special care is taken to make sure the b_frame is aligned to the correct field.
+       // field 0 = lower field and y should be odd (y is 0-based).
+       // field 1 = upper field and y should be even.
+       if ( ( field > -1 ) && ( y % 2 == field ) )
+       {
+               //fprintf( stderr, "field %d y %d\n", field, y );
+               if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
+                       p_dest += stride_dest;
+               else
+                       p_dest -= stride_dest;
+       }
+
+       // On the second field, use the other lines from b_frame
+       if ( field == 1 )
+       {
+               p_src += stride_src;
+               if ( p_alpha )
+                       p_alpha += stride_src / bpp;
+               height_src--;
+       }
 
        uint8_t *p = p_src;
        uint8_t *q = p_dest;
        uint8_t *o = p_dest;
        uint8_t *z = p_alpha;
 
-       uint8_t Y;
-       uint8_t UV;
        uint8_t a;
-       float value;
+       int32_t value;
+       int step = ( field > -1 ) ? 2 : 1;
+
+       stride_src = stride_src * step;
+       int alpha_stride = stride_src / bpp;
+       stride_dest = stride_dest * step;
 
        // now do the compositing only to cropped extents
-       for ( i = 0; i < height_src; i++ )
+       for ( i = 0; i < height_src; i += step )
        {
                p = p_src;
                q = p_dest;
-               o = p_dest;
+               o = q;
                z = p_alpha;
 
                for ( j = 0; j < width_src; j ++ )
                {
-                       Y = *p ++;
-                       UV = *p ++;
                        a = ( z == NULL ) ? 255 : *z ++;
-                       value = ( weight * ( float ) a / 255.0 );
-                       *o ++ = (uint8_t)( Y * value + *q++ * ( 1 - value ) );
-                       *o ++ = (uint8_t)( UV * value + *q++ * ( 1 - value ) );
+                       value = ( weight * ( a + 1 ) ) >> 8;
+                       *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16;
+                       *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16;
                }
 
                p_src += stride_src;
                p_dest += stride_dest;
                if ( p_alpha )
-                       p_alpha += stride_src / 2;
+                       p_alpha += alpha_stride;
        }
 
        return ret;
 }
 
 
+/** Get the properly sized image from b_frame.
+*/
+
+static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
+{
+       int ret = 0;
+       mlt_image_format format = mlt_image_yuv422;
+
+       // Get the properties objects
+       mlt_properties b_props = mlt_frame_properties( b_frame );
+       mlt_properties properties = mlt_transition_properties( this );
+
+       // ???: Not getting the logic of this...
+       geometry->sw = geometry->w;
+       geometry->sh = geometry->h;
+
+       if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 )
+       {
+               // Adjust b_frame pixel aspect
+               int normalised_width = geometry->w;
+               int normalised_height = geometry->h;
+               int real_width = get_value( b_props, "real_width", "width" );
+               int real_height = get_value( b_props, "real_height", "height" );
+               double input_ar = mlt_frame_get_aspect_ratio( b_frame );
+               double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
+               int scaled_width = real_width;
+               int scaled_height = real_height;
+               double output_sar = ( double ) geometry->nw / geometry->nh / output_ar;
+
+               // If the output is fat pixels (NTSC) then stretch our input horizontally
+               // derived from: output_sar / input_sar * real_width
+               scaled_width = output_sar * real_height * input_ar;
+                       
+               // Now ensure that our images fit in the normalised frame
+               if ( scaled_width > normalised_width )
+               {
+                       scaled_height = scaled_height * normalised_width / scaled_width;
+                       scaled_width = normalised_width;
+               }
+               if ( scaled_height > normalised_height )
+               {
+                       scaled_width = scaled_width * normalised_height / scaled_height;
+                       scaled_height = normalised_height;
+               }
+
+               // Now apply the fill
+               // TODO: Should combine fill/distort in one property
+               if ( mlt_properties_get( properties, "fill" ) != NULL )
+               {
+                       scaled_width = ( geometry->w / scaled_width ) * scaled_width;
+                       scaled_height = ( geometry->h / scaled_height ) * scaled_height;
+               }
+
+               // Save the new scaled dimensions
+               geometry->sw = scaled_width;
+               geometry->sh = scaled_height;
+       }
+
+       // We want to ensure that we bypass resize now...
+       mlt_properties_set( b_props, "distort", "true" );
+
+       // Take into consideration alignment for optimisation
+       alignment_calculate( geometry );
+
+       // Adjust to consumer scale
+       int x = geometry->x * *width / geometry->nw + 0.5;
+       int y = geometry->y * *height / geometry->nh + 0.5;
+       *width = geometry->sw * *width / geometry->nw;
+       *height = geometry->sh * *height / geometry->nh;
+
+       x -= x % 2;
+
+       // optimization points - no work to do
+       if ( *width <= 0 || *height <= 0 )
+               return 1;
+
+       if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
+               return 1;
+
+       ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
+
+       return ret;
+}
+
+
+static uint8_t *transition_get_alpha_mask( mlt_frame this )
+{
+       // Obtain properties of frame
+       mlt_properties properties = mlt_frame_properties( this );
+
+       // Return the alpha mask
+       return mlt_properties_get_data( properties, "alpha", NULL );
+}
+
 /** Get the image.
 */
 
@@ -314,6 +542,12 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
        // Get the b frame from the stack
        mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
 
+       // This compositer is yuv422 only
+       *format = mlt_image_yuv422;
+
+       // Get the transition from the a frame
+       mlt_transition this = mlt_frame_pop_service( a_frame );
+
        // Get the image from the a frame
        mlt_frame_get_image( a_frame, image, format, width, height, 1 );
 
@@ -325,38 +559,71 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
                // Get the properties of the b frame
                mlt_properties b_props = mlt_frame_properties( b_frame );
 
-               // Get the transition from the b frame
-               mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
-
                // Get the properties from the transition
                mlt_properties properties = mlt_transition_properties( this );
 
                // Structures for geometry
                struct geometry_s result;
-               struct geometry_s start;
-               struct geometry_s end;
+               struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
 
                // Calculate the position
-               float position = position_calculate( this, a_frame );
-
-               // Obtain the normalised width and height from the a_frame
-               int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
-               int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
+               float position = mlt_properties_get_double( b_props, "relative_position" );
+               float delta = delta_calculate( this, a_frame );
 
                // Now parse the geometries
-               geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
-               geometry_parse( &end, &start, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
+               if ( start == NULL )
+               {
+                       // Obtain the normalised width and height from the a_frame
+                       int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
+                       int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
 
-               // Do the calculation
-               geometry_calculate( &result, &start, &end, position );
+                       // Parse the transitions properties
+                       start = transition_parse_keys( this, normalised_width, normalised_height );
+               }
 
                // Since we are the consumer of the b_frame, we must pass along these
                // consumer properties from the a_frame
                mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
                mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) );
+
+               // Do the calculation
+               geometry_calculate( &result, start, position );
+
+               // Now parse the alignment
+               result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
+               result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
+
+               // Get the image from the b frame
+               uint8_t *image_b = NULL;
+               int width_b = *width;
+               int height_b = *height;
                
-               // Composite the b_frame on the a_frame
-               composite_yuv( *image, *format, *width, *height, b_frame, result );
+               if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
+               {
+                       uint8_t *dest = *image;
+                       uint8_t *src = image_b;
+                       int bpp = 2;
+                       uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
+                       int progressive = mlt_properties_get_int( a_props, "progressive" ) ||
+                                       mlt_properties_get_int( a_props, "consumer_progressive" ) ||
+                                       mlt_properties_get_int( properties, "progressive" );
+                       int field;
+
+                       for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
+                       {
+                               // Assume lower field (0) first
+                               float field_position = position + field * delta;
+                               
+                               // Do the calculation if we need to
+                               geometry_calculate( &result, start, field_position );
+
+                               // Align
+                               alignment_calculate( &result );
+
+                               // Composite the b_frame on the a_frame
+                               composite_yuv( dest, *width, *height, bpp, src, width_b, height_b, alpha, result, progressive ? -1 : field );
+                       }
+               }
        }
 
        return 0;
@@ -368,8 +635,8 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
 {
        // Propogate the transition properties to the b frame
-       mlt_properties b_props = mlt_frame_properties( b_frame );
-       mlt_properties_set_data( b_props, "transition_composite", this, 0, NULL, NULL );
+       mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, a_frame ) );
+       mlt_frame_push_service( a_frame, this );
        mlt_frame_push_get_image( a_frame, transition_get_image );
        mlt_frame_push_frame( a_frame, b_frame );
        return a_frame;
@@ -385,7 +652,6 @@ mlt_transition transition_composite_init( char *arg )
        {
                this->process = composite_process;
                mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" );
-               mlt_properties_set( mlt_transition_properties( this ), "end", "" );
        }
        return this;
 }