some bugfixes, filter_shape producer, pixbuf takes svg xml, fezzik can take a service...
[melted] / src / modules / core / transition_composite.c
index ad0c792..d9c1bf4 100644 (file)
 #include <stdio.h>
 #include <stdlib.h>
 #include <ctype.h>
+#include <string.h>
+#include <math.h>
 
 /** Geometry struct.
 */
 
 struct geometry_s
 {
+       float position;
+       float mix;
        int nw; // normalised width
        int nh; // normalised height
        int sw; // scaled width, not including consumer scale based upon w/nw
@@ -38,9 +42,10 @@ struct geometry_s
        float y;
        float w;
        float h;
-       float mix;
        int halign; // horizontal alignment: 0=left, 1=center, 2=right
        int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
+       int distort;
+       struct geometry_s *next;
 };
 
 /** Parse a value from a geometry string.
@@ -85,7 +90,9 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa
                geometry->y = defaults->y;
                geometry->w = geometry->sw = defaults->w;
                geometry->h = geometry->sh = defaults->h;
+               geometry->distort = defaults->distort;
                geometry->mix = defaults->mix;
+               defaults->next = geometry;
        }
        else
        {
@@ -93,13 +100,20 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa
        }
 
        // Parse the geomtry string
-       if ( property != NULL )
+       if ( property != NULL && strcmp( property, "" ) )
        {
                char *ptr = property;
                geometry->x = parse_value( &ptr, nw, ',', geometry->x );
                geometry->y = parse_value( &ptr, nh, ':', geometry->y );
                geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
                geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
+               if ( *ptr == '!' )
+               {
+                       geometry->distort = 1;
+                       ptr ++;
+                       if ( *ptr == ':' )
+                               ptr ++;
+               }
                geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
        }
 }
@@ -107,16 +121,138 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa
 /** Calculate real geometry.
 */
 
-static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, struct geometry_s *out, float position )
+static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
 {
+       // Search in for position
+       struct geometry_s *out = in->next;
+
+       if ( position >= 1.0 )
+       {
+               int section = floor( position );
+               position -= section;
+               if ( section % 2 == 1 )
+                       position = 1.0 - position;
+       }
+
+       while ( out->next != NULL )
+       {
+               if ( position >= in->position && position < out->position )
+                       break;
+
+               in = out;
+               out = in->next;
+       }
+
+       position = ( position - in->position ) / ( out->position - in->position );
+
        // Calculate this frames geometry
        output->nw = in->nw;
        output->nh = in->nh;
-       output->x = in->x + ( out->x - in->x ) * position + 0.5;
-       output->y = in->y + ( out->y - in->y ) * position + 0.5;
+       output->x = in->x + ( out->x - in->x ) * position;
+       output->y = in->y + ( out->y - in->y ) * position;
        output->w = in->w + ( out->w - in->w ) * position;
        output->h = in->h + ( out->h - in->h ) * position;
        output->mix = in->mix + ( out->mix - in->mix ) * position;
+       output->distort = in->distort;
+
+       output->x = ( int )floor( output->x ) & 0xfffffffe;
+       output->w = ( int )floor( output->w ) & 0xfffffffe;
+       output->sw &= 0xfffffffe;
+}
+
+void transition_destroy_keys( void *arg )
+{
+       struct geometry_s *ptr = arg;
+       struct geometry_s *next = NULL;
+
+       while ( ptr != NULL )
+       {
+               next = ptr->next;
+               free( ptr );
+               ptr = next;
+       }
+}
+
+static struct geometry_s *transition_parse_keys( mlt_transition this,  int normalised_width, int normalised_height )
+{
+       // Loop variable for property interrogation
+       int i = 0;
+
+       // Get the properties of the transition
+       mlt_properties properties = mlt_transition_properties( this );
+
+       // Get the in and out position
+       mlt_position in = mlt_transition_get_in( this );
+       mlt_position out = mlt_transition_get_out( this );
+
+       // Create the start
+       struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
+
+       // Create the end (we always need two entries)
+       struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
+
+       // Pointer
+       struct geometry_s *ptr = start;
+
+       // Parse the start property
+       geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
+
+       // Parse the keys in between
+       for ( i = 0; i < mlt_properties_count( properties ); i ++ )
+       {
+               // Get the name of the property
+               char *name = mlt_properties_get_name( properties, i );
+
+               // Check that it's valid
+               if ( !strncmp( name, "key[", 4 ) )
+               {
+                       // Get the value of the property
+                       char *value = mlt_properties_get_value( properties, i );
+
+                       // Determine the frame number
+                       int frame = atoi( name + 4 );
+
+                       // Determine the position
+                       float position = 0;
+                       
+                       if ( frame >= 0 && frame < ( out - in ) )
+                               position = ( float )frame / ( float )( out - in + 1 );
+                       else if ( frame < 0 && - frame < ( out - in ) )
+                               position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
+
+                       // For now, we'll exclude all keys received out of order
+                       if ( position > ptr->position )
+                       {
+                               // Create a new geometry
+                               struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
+
+                               // Parse and add to the list
+                               geometry_parse( temp, ptr, value, normalised_width, normalised_height );
+
+                               // Assign the position
+                               temp->position = position;
+
+                               // Allow the next to be appended after this one
+                               ptr = temp;
+                       }
+                       else
+                       {
+                               fprintf( stderr, "Key out of order - skipping %s\n", name );
+                       }
+               }
+       }
+       
+       // Parse the end
+       geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
+       if ( out > 0 )
+               end->position = ( float )( out - in ) / ( float )( out - in + 1 );
+       else
+               end->position = 1;
+
+       // Assign to properties to ensure we get destroyed
+       mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
+
+       return start;
 }
 
 /** Parse the alignment properties into the geometry.
@@ -142,8 +278,8 @@ static int alignment_parse( char* align )
 
 static void alignment_calculate( struct geometry_s *geometry )
 {
-       geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5;
-       geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5;
+       geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2;
+       geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2;
 }
 
 /** Calculate the position for this frame.
@@ -155,7 +291,7 @@ static float position_calculate( mlt_transition this, mlt_frame frame )
        mlt_position in = mlt_transition_get_in( this );
        mlt_position out = mlt_transition_get_out( this );
 
-       // Get the position of the frame
+       // Get the position
        mlt_position position = mlt_frame_get_position( frame );
 
        // Now do the calcs
@@ -165,7 +301,7 @@ static float position_calculate( mlt_transition this, mlt_frame frame )
 /** Calculate the field delta for this frame - position between two frames.
 */
 
-static float delta_calculate( mlt_transition this, mlt_frame frame )
+static inline float delta_calculate( mlt_transition this, mlt_frame frame )
 {
        // Get the in and out position
        mlt_position in = mlt_transition_get_in( this );
@@ -176,8 +312,7 @@ static float delta_calculate( mlt_transition this, mlt_frame frame )
 
        // Now do the calcs
        float x = ( float )( position - in ) / ( float )( out - in + 1 );
-       position++;
-       float y = ( float )( position - in ) / ( float )( out - in + 1 );
+       float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
 
        return ( y - x ) / 2.0;
 }
@@ -196,18 +331,18 @@ static int get_value( mlt_properties properties, char *preferred, char *fallback
 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field )
 {
        int ret = 0;
-       int i, j, k;
+       int i, j;
        int x_src = 0, y_src = 0;
-       float weight = geometry.mix / 100;
+       int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
        int stride_src = width_src * bpp;
        int stride_dest = width_dest * bpp;
 
        // Adjust to consumer scale
-       int x = geometry.x * width_dest / geometry.nw + 0.5;
-       int y = geometry.y * height_dest / geometry.nh + 0.5;
+       int x = geometry.x * width_dest / geometry.nw;
+       int y = geometry.y * height_dest / geometry.nh;
 
-       if ( bpp == 2 )
-               x -= x % 2;
+       x &= 0xfffffffe;
+       width_src &= 0xfffffffe;
 
        // optimization points - no work to do
        if ( width_src <= 0 || height_src <= 0 )
@@ -254,7 +389,8 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int
        // field 1 = upper field and y should be even.
        if ( ( field > -1 ) && ( y % 2 == field ) )
        {
-               if ( y == 0 )
+               //fprintf( stderr, "field %d y %d\n", field, y );
+               if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
                        p_dest += stride_dest;
                else
                        p_dest -= stride_dest;
@@ -275,25 +411,33 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int
        uint8_t *z = p_alpha;
 
        uint8_t a;
-       float value;
+       int32_t value;
        int step = ( field > -1 ) ? 2 : 1;
 
+       stride_src = stride_src * step;
+       int alpha_stride = stride_src / bpp;
+       stride_dest = stride_dest * step;
+
        // now do the compositing only to cropped extents
        for ( i = 0; i < height_src; i += step )
        {
-               p = &p_src[ i * stride_src ];
-               q = &p_dest[ i * stride_dest ];
-               o = &p_dest[ i * stride_dest ];
-               if ( p_alpha )
-                       z = &p_alpha[ i * stride_src / bpp ];
+               p = p_src;
+               q = p_dest;
+               o = q;
+               z = p_alpha;
 
                for ( j = 0; j < width_src; j ++ )
                {
                        a = ( z == NULL ) ? 255 : *z ++;
-                       value = ( weight * ( float ) a / 255.0 );
-                       for ( k = 0; k < bpp; k ++ )
-                               *o ++ = (uint8_t)( *p++ * value + *q++ * ( 1 - value ) );
+                       value = ( weight * ( a + 1 ) ) >> 8;
+                       *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16;
+                       *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16;
                }
+
+               p_src += stride_src;
+               p_dest += stride_dest;
+               if ( p_alpha )
+                       p_alpha += alpha_stride;
        }
 
        return ret;
@@ -303,21 +447,16 @@ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int
 /** Get the properly sized image from b_frame.
 */
 
-static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
+static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
 {
        int ret = 0;
        mlt_image_format format = mlt_image_yuv422;
 
-       // Initialise the scaled dimensions from the computed
-       geometry->sw = geometry->w;
-       geometry->sh = geometry->h;
-
-       // Compute the dimensioning rectangle
+       // Get the properties objects
        mlt_properties b_props = mlt_frame_properties( b_frame );
-       mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
        mlt_properties properties = mlt_transition_properties( this );
 
-       if ( mlt_properties_get( properties, "distort" ) == NULL )
+       if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 )
        {
                // Adjust b_frame pixel aspect
                int normalised_width = geometry->w;
@@ -326,28 +465,14 @@ static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, in
                int real_height = get_value( b_props, "real_height", "height" );
                double input_ar = mlt_frame_get_aspect_ratio( b_frame );
                double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
-               //int scaled_width = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_width;
-               //int scaled_height = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_height;
                int scaled_width = real_width;
                int scaled_height = real_height;
                double output_sar = ( double ) geometry->nw / geometry->nh / output_ar;
 
-               // We always normalise pixel aspect by requesting a larger than normal
-               // image in order to maximise usage of the bounding rectangle
-
-               // These calcs are optimised by reducing factors in equations
-               if ( output_sar < 1.0 )
-                       // If the output is skinny pixels (PAL) then stretch our input vertically
-                       // derived from: input_sar / output_sar * real_height
-                       scaled_height = ( double )real_width / input_ar / output_sar;
-
-               else
-                       // If the output is fat pixels (NTSC) then stretch our input horizontally
-                       // derived from: output_sar / input_sar * real_width
-                       scaled_width = output_sar * real_height * input_ar;
+               // If the output is fat pixels (NTSC) then stretch our input horizontally
+               // derived from: output_sar / input_sar * real_width
+               scaled_width = output_sar * real_height * input_ar;
                        
-//             fprintf( stderr, "composite: real %dx%d scaled %dx%d normalised %dx%d\n", real_width, real_height, scaled_width, scaled_height, normalised_width, normalised_height );
-
                // Now ensure that our images fit in the normalised frame
                if ( scaled_width > normalised_width )
                {
@@ -360,13 +485,22 @@ static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, in
                        scaled_height = normalised_height;
                }
 
-               // Now we need to align to the geometry
-               if ( scaled_width <= geometry->w && scaled_height <= geometry->h )
+               // Now apply the fill
+               // TODO: Should combine fill/distort in one property
+               if ( mlt_properties_get( properties, "fill" ) != NULL )
                {
-                       // Save the new scaled dimensions
-                       geometry->sw = scaled_width;
-                       geometry->sh = scaled_height;
+                       scaled_width = ( geometry->w / scaled_width ) * scaled_width;
+                       scaled_height = ( geometry->h / scaled_height ) * scaled_height;
                }
+
+               // Save the new scaled dimensions
+               geometry->sw = scaled_width;
+               geometry->sh = scaled_height;
+       }
+       else
+       {
+               geometry->sw = geometry->w;
+               geometry->sh = geometry->h;
        }
 
        // We want to ensure that we bypass resize now...
@@ -376,15 +510,13 @@ static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, in
        alignment_calculate( geometry );
 
        // Adjust to consumer scale
-       int x = geometry->x * *width / geometry->nw + 0.5;
-       int y = geometry->y * *height / geometry->nh + 0.5;
+       int x = geometry->x * *width / geometry->nw;
+       int y = geometry->y * *height / geometry->nh;
        *width = geometry->sw * *width / geometry->nw;
        *height = geometry->sh * *height / geometry->nh;
 
        x -= x % 2;
 
-       //fprintf( stderr, "composite calculated %d,%d:%dx%d\n", x, y, *width, *height );
-
        // optimization points - no work to do
        if ( *width <= 0 || *height <= 0 )
                return 1;
@@ -392,19 +524,114 @@ static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, in
        if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
                return 1;
 
-       ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 /* writable */ );
+       ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
 
        return ret;
 }
 
 
-static uint8_t *transition_get_alpha_mask( mlt_frame this )
+struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position )
 {
-       // Obtain properties of frame
-       mlt_properties properties = mlt_frame_properties( this );
+       // Get the properties from the transition
+       mlt_properties properties = mlt_transition_properties( this );
+
+       // Get the properties from the frame
+       mlt_properties a_props = mlt_frame_properties( a_frame );
+       
+       // Structures for geometry
+       struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
 
-       // Return the alpha mask
-       return mlt_properties_get_data( properties, "alpha", NULL );
+       // Now parse the geometries
+       if ( start == NULL )
+       {
+               // Obtain the normalised width and height from the a_frame
+               int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
+               int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
+
+               // Parse the transitions properties
+               start = transition_parse_keys( this, normalised_width, normalised_height );
+       }
+
+       // Do the calculation
+       geometry_calculate( result, start, position );
+
+       // Now parse the alignment
+       result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
+       result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
+
+       return start;
+}
+
+mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame )
+{
+       // Create a frame to return
+       mlt_frame b_frame = mlt_frame_init( );
+
+       // Get the properties of the a frame
+       mlt_properties a_props = mlt_frame_properties( a_frame );
+
+       // Get the properties of the b frame
+       mlt_properties b_props = mlt_frame_properties( b_frame );
+
+       // Get the position
+       float position = position_calculate( this, a_frame );
+
+       // Destination image
+       uint8_t *dest = NULL;
+
+       // Get the image and dimensions
+       uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
+       int width = mlt_properties_get_int( a_props, "width" );
+       int height = mlt_properties_get_int( a_props, "height" );
+
+       // Pointers for copy operation
+       uint8_t *p;
+       uint8_t *q;
+       uint8_t *r;
+
+       // Corrdinates
+       int w = 0;
+       int h = 0;
+       int x = 0;
+       int y = 0;
+
+       // Will need to know region to copy
+       struct geometry_s result;
+
+       // Calculate the region now
+       composite_calculate( &result, this, a_frame, position );
+
+       // Need to scale down to actual dimensions
+       x = result.x * width / result.nw ;
+       y = result.y * height / result.nh;
+       w = result.w * width / result.nw;
+       h = result.h * height / result.nh;
+
+       x &= 0xfffffffe;
+       w &= 0xfffffffe;
+
+       // Now we need to create a new destination image
+       dest = mlt_pool_alloc( w * h * 2 );
+
+       // Copy the region of the image
+       p = image + y * width * 2 + x * 2;
+       q = dest;
+       r = dest + w * h * 2; 
+
+       while ( q < r )
+       {
+               memcpy( q, p, w * 2 );
+               q += w * 2;
+               p += width * 2;
+       }
+
+       // Assign to the new frame
+       mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
+       mlt_properties_set_int( b_props, "width", w );
+       mlt_properties_set_int( b_props, "height", h );
+
+       // Return the frame
+       return b_frame;
 }
 
 /** Get the image.
@@ -415,6 +642,9 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
        // Get the b frame from the stack
        mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
 
+       // Get the transition from the a frame
+       mlt_transition this = mlt_frame_pop_service( a_frame );
+
        // This compositer is yuv422 only
        *format = mlt_image_yuv422;
 
@@ -429,47 +659,30 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
                // Get the properties of the b frame
                mlt_properties b_props = mlt_frame_properties( b_frame );
 
-               // Get the transition from the b frame
-               mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
-
                // Get the properties from the transition
                mlt_properties properties = mlt_transition_properties( this );
 
                // Structures for geometry
                struct geometry_s result;
-               struct geometry_s start;
-               struct geometry_s end;
 
                // Calculate the position
-               float position = position_calculate( this, a_frame );
+               float position = mlt_properties_get_double( b_props, "relative_position" );
                float delta = delta_calculate( this, a_frame );
 
-               // Obtain the normalised width and height from the a_frame
-               int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
-               int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
-
-               // Now parse the geometries
-               geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
-               geometry_parse( &end, &start, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
-
-               // Now parse the alignment
-               result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
-               result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
+               // Do the calculation
+               struct geometry_s *start = composite_calculate( &result, this, a_frame, position );
 
                // Since we are the consumer of the b_frame, we must pass along these
                // consumer properties from the a_frame
                mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
                mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) );
 
-               // Do the calculation
-               geometry_calculate( &result, &start, &end, position );
-
                // Get the image from the b frame
-               uint8_t *image_b;
+               uint8_t *image_b = NULL;
                int width_b = *width;
                int height_b = *height;
                
-               if ( get_b_frame_image( b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
+               if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
                {
                        uint8_t *dest = *image;
                        uint8_t *src = image_b;
@@ -480,101 +693,13 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
                                        mlt_properties_get_int( properties, "progressive" );
                        int field;
 
-                       // See if the alpha channel is our destination
-                       if ( mlt_properties_get( properties, "a_frame" ) != NULL )
-                       {
-                               bpp = 1;
-                               
-                               // Get or make the a_frame alpha channel
-                               dest = mlt_frame_get_alpha_mask( a_frame );
-                               if ( dest == NULL )
-                               {
-                                       // Allocate the alpha
-                                       dest = mlt_pool_alloc( *width * *height );
-                                       mlt_properties_set_data( a_props, "alpha", dest, *width * *height, ( mlt_destructor )mlt_pool_release, NULL );
-                                       
-                                       // Set alpha call back
-                                       a_frame->get_alpha_mask = transition_get_alpha_mask;
-                               }
-
-                               // If the source is an image, convert its YUV to an alpha channel
-                               if ( mlt_properties_get( properties, "b_frame" ) == NULL )
-                               {
-                                       if ( alpha == NULL )
-                                       {
-                                               // Allocate the alpha
-                                               alpha = mlt_pool_alloc( width_b * height_b );
-                                               mlt_properties_set_data( b_props, "alpha", alpha, width_b * height_b, ( mlt_destructor )mlt_pool_release, NULL );
-
-                                               // Set alpha call back
-                                               b_frame->get_alpha_mask = transition_get_alpha_mask;
-                                       }
-
-                                       // Copy the Y values into alpha
-                                       uint8_t *p = image_b;
-                                       uint8_t *q = alpha;
-                                       int i;
-                                       for ( i = 0; i < width_b * height_b; i ++, p += 2 )
-                                               *q ++ = *p;
-
-                                       // Setup to composite from the alpha channel
-                                       src = alpha;
-                                       alpha = NULL;
-                               }
-                       }
-                       
-                       // See if the alpha channel is our source
-                       if ( mlt_properties_get( properties, "b_frame" ) != NULL )
-                       {
-                               // If we do not have an alpha channel fabricate it
-                               if ( alpha == NULL )
-                               {
-                                       // Allocate the alpha
-                                       alpha = mlt_pool_alloc( width_b * height_b );
-                                       mlt_properties_set_data( b_props, "alpha", alpha, width_b * height_b, ( mlt_destructor )mlt_pool_release, NULL );
-
-                                       // Set alpha call back
-                                       b_frame->get_alpha_mask = transition_get_alpha_mask;
-                                       
-                                       // Copy the Y values into alpha
-                                       uint8_t *p = image_b;
-                                       uint8_t *q = alpha;
-                                       int i;
-                                       for ( i = 0; i < width_b * height_b; i ++, p += 2 )
-                                               *q ++ = *p;
-                               }
-
-                               // If the destination is image, convert the alpha channel to YUV
-                               if ( mlt_properties_get( properties, "a_frame" ) == NULL )
-                               {
-                                       uint8_t *p = alpha;
-                                       uint8_t *q = image_b;
-                                       int i;
-                                       
-                                       for ( i = 0; i < width_b * height_b; i ++, p ++ )
-                                       {
-                                               *q ++ = 16 + ( ( float )*p / 255 * 220 ); // 220 is the luma range from 16-235
-                                               *q ++ = 128;
-                                       }
-                               }
-                               else
-                               {
-                                       // Setup to composite from the alpha channel
-                                       src = alpha;
-                                       bpp = 1;
-                               }
-
-                               // Never the apply the alpha channel to this type of operation
-                               alpha = NULL;
-                       }
-
                        for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
                        {
                                // Assume lower field (0) first
                                float field_position = position + field * delta;
                                
-                               // Do the calculation
-                               geometry_calculate( &result, &start, &end, field_position );
+                               // Do the calculation if we need to
+                               geometry_calculate( &result, start, field_position );
 
                                // Align
                                alignment_calculate( &result );
@@ -594,8 +719,8 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
 {
        // Propogate the transition properties to the b frame
-       mlt_properties b_props = mlt_frame_properties( b_frame );
-       mlt_properties_set_data( b_props, "transition_composite", this, 0, NULL, NULL );
+       mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, a_frame ) );
+       mlt_frame_push_service( a_frame, this );
        mlt_frame_push_get_image( a_frame, transition_get_image );
        mlt_frame_push_frame( a_frame, b_frame );
        return a_frame;
@@ -611,7 +736,6 @@ mlt_transition transition_composite_init( char *arg )
        {
                this->process = composite_process;
                mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" );
-               mlt_properties_set( mlt_transition_properties( this ), "end", "" );
        }
        return this;
 }