optimise dissolve case
[melted] / src / modules / core / transition_composite.c
index efa251c..b5121ed 100644 (file)
 
 #include <stdio.h>
 #include <stdlib.h>
+#include <ctype.h>
 
 /** Geometry struct.
 */
 
 struct geometry_s
 {
+       int nw; // normalised width
+       int nh; // normalised height
+       int sw; // scaled width, not including consumer scale based upon w/nw
+       int sh; // scaled height, not including consumer scale based upon h/nh
        float x;
        float y;
        float w;
        float h;
        float mix;
+       int halign; // horizontal alignment: 0=left, 1=center, 2=right
+       int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
 };
 
-/** Parse a geometry property string.
+/** Parse a value from a geometry string.
 */
 
-static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property )
+static float parse_value( char **ptr, int normalisation, char delim, float defaults )
 {
+       float value = defaults;
+
+       if ( *ptr != NULL && **ptr != '\0' )
+       {
+               char *end = NULL;
+               value = strtod( *ptr, &end );
+               if ( end != NULL )
+               {
+                       if ( *end == '%' )
+                               value = ( value / 100.0 ) * normalisation;
+                       while ( *end == delim || *end == '%' )
+                               end ++;
+               }
+               *ptr = end;
+       }
+
+       return value;
+}
+
+/** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be 
+       expressed as a percentage by appending a % after the value, otherwise values are
+       assumed to be relative to the normalised dimensions of the consumer.
+*/
+
+static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
+{
+       // Assign normalised width and height
+       geometry->nw = nw;
+       geometry->nh = nh;
+
        // Assign from defaults if available
        if ( defaults != NULL )
        {
                geometry->x = defaults->x;
                geometry->y = defaults->y;
-               geometry->w = defaults->w;
-               geometry->h = defaults->h;
+               geometry->w = geometry->sw = defaults->w;
+               geometry->h = geometry->sh = defaults->h;
                geometry->mix = defaults->mix;
        }
        else
@@ -57,7 +94,14 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa
 
        // Parse the geomtry string
        if ( property != NULL )
-               sscanf( property, "%f,%f:%fx%f:%f", &geometry->x, &geometry->y, &geometry->w, &geometry->h, &geometry->mix );
+       {
+               char *ptr = property;
+               geometry->x = parse_value( &ptr, nw, ',', geometry->x );
+               geometry->y = parse_value( &ptr, nh, ':', geometry->y );
+               geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
+               geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
+               geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
+       }
 }
 
 /** Calculate real geometry.
@@ -66,13 +110,42 @@ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defa
 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, struct geometry_s *out, float position )
 {
        // Calculate this frames geometry
-       output->x = in->x + ( out->x - in->x ) * position;
-       output->y = in->y + ( out->y - in->y ) * position;
+       output->nw = in->nw;
+       output->nh = in->nh;
+       output->x = in->x + ( out->x - in->x ) * position + 0.5;
+       output->y = in->y + ( out->y - in->y ) * position + 0.5;
        output->w = in->w + ( out->w - in->w ) * position;
        output->h = in->h + ( out->h - in->h ) * position;
        output->mix = in->mix + ( out->mix - in->mix ) * position;
 }
 
+/** Parse the alignment properties into the geometry.
+*/
+
+static int alignment_parse( char* align )
+{
+       int ret = 0;
+       
+       if ( align == NULL );
+       else if ( isdigit( align[ 0 ] ) )
+               ret = atoi( align );
+       else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
+               ret = 1;
+       else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
+               ret = 2;
+
+       return ret;
+}
+
+/** Adjust position according to scaled size and alignment properties.
+*/
+
+static void alignment_calculate( struct geometry_s *geometry )
+{
+       geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5;
+       geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5;
+}
+
 /** Calculate the position for this frame.
 */
 
@@ -89,75 +162,49 @@ static float position_calculate( mlt_transition this, mlt_frame frame )
        return ( float )( position - in ) / ( float )( out - in + 1 );
 }
 
-/** Composite function.
+/** Calculate the field delta for this frame - position between two frames.
 */
 
-static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int width_dest, int height_dest, mlt_frame that, struct geometry_s geometry )
+static float delta_calculate( mlt_transition this, mlt_frame frame )
 {
-       int ret = 0;
-       uint8_t *p_src;
-       int i, j;
-       int stride_src;
-       int stride_dest;
-       int x_src = 0, y_src = 0;
-
-       mlt_image_format format_src = format_dest;
-       int x = ( int )( ( float )width_dest * geometry.x / 100 );
-       int y = ( int )( ( float )height_dest * geometry.y / 100 );
-       float weight = geometry.mix / 100;
-
-       // Compute the dimensioning rectangle
-       int width_src = ( int )( ( float )width_dest * geometry.w / 100 );
-       int height_src = ( int )( ( float )height_dest * geometry.h / 100 );
+       // Get the in and out position
+       mlt_position in = mlt_transition_get_in( this );
+       mlt_position out = mlt_transition_get_out( this );
 
-       mlt_properties b_props = mlt_frame_properties( that );
-       mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
-       mlt_properties properties = mlt_transition_properties( this );
+       // Get the position of the frame
+       mlt_position position = mlt_frame_get_position( frame );
 
-       if ( mlt_properties_get( properties, "distort" ) == NULL &&
-                mlt_properties_get( mlt_frame_properties( that ), "real_width" ) != NULL )
-       {
-               int width_b = mlt_properties_get_double( b_props, "real_width" );
-               int height_b = mlt_properties_get_double( b_props, "real_height" );
+       // Now do the calcs
+       float x = ( float )( position - in ) / ( float )( out - in + 1 );
+       position++;
+       float y = ( float )( position - in ) / ( float )( out - in + 1 );
 
-               // See if we need to normalise pixel aspect ratio
-               // We can use consumer_aspect_ratio because the a_frame will take on this aspect
-               double aspect = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
-               if ( aspect != 0 )
-               {
-                       // Derive the consumer pixel aspect
-                       double oaspect = aspect / ( double )width_dest * height_dest;
+       return ( y - x ) / 2.0;
+}
 
-                       // Get the b frame pixel aspect - usually 1
-                       double iaspect = mlt_properties_get_double( b_props, "aspect_ratio" ) / width_b * height_b;
+static int get_value( mlt_properties properties, char *preferred, char *fallback )
+{
+       int value = mlt_properties_get_int( properties, preferred );
+       if ( value == 0 )
+               value = mlt_properties_get_int( properties, fallback );
+       return value;
+}
 
-                       // Normalise pixel aspect
-                       if ( iaspect != 0 && iaspect != oaspect )
-                               width_b = iaspect / oaspect * ( double )width_b + 0.5;
-                               
-                       // Tell rescale not to normalise display aspect
-                       mlt_frame_set_aspect_ratio( that, aspect );
-               }
+/** Composite function.
+*/
 
-               // Constrain the overlay to the dimensioning rectangle
-               if ( width_b < width_src )
-                       width_src = width_b;
-               if ( height_b < height_src )
-                       height_src = height_b;
+static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field )
+{
+       int ret = 0;
+       int i, j;
+       int x_src = 0, y_src = 0;
+       float weight = geometry.mix / 100;
+       int stride_src = width_src * 2;
+       int stride_dest = width_dest * 2;
 
-               // Adjust overall scale for consumer
-               double consumer_scale = mlt_properties_get_double( b_props, "consumer_scale" );
-               if ( consumer_scale > 0 )
-               {
-                       width_src = consumer_scale * width_src + 0.5;
-                       height_src = consumer_scale * height_src + 0.5;
-               }
-       }
-       else if ( mlt_properties_get( b_props, "real_width" ) != NULL )
-       {
-               // Tell rescale not to normalise display aspect
-               mlt_properties_set_double( b_props, "consumer_aspect_ratio", 0 );
-       }
+       // Adjust to consumer scale
+       int x = geometry.x * width_dest / geometry.nw + 0.5;
+       int y = geometry.y * height_dest / geometry.nh + 0.5;
 
        x -= x % 2;
 
@@ -168,14 +215,6 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid
        if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
                return ret;
 
-       format_src = mlt_image_yuv422;
-       format_dest = mlt_image_yuv422;
-
-       mlt_frame_get_image( that, &p_src, &format_src, &width_src, &height_src, 1 /* writable */ );
-
-       stride_src = width_src * 2;
-       stride_dest = width_dest * 2;
-       
        // crop overlay off the left edge of frame
        if ( x < 0 )
        {
@@ -204,13 +243,31 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid
        // offset pointer into frame buffer based upon positive, even coordinates only!
        p_dest += ( x < 0 ? 0 : x ) * 2 + ( y < 0 ? 0 : y ) * stride_dest;
 
-       // Get the alpha channel of the overlay
-       uint8_t *p_alpha = mlt_frame_get_alpha_mask( that );
-
        // offset pointer into alpha channel based upon cropping
        if ( p_alpha )
                p_alpha += x_src + y_src * stride_src / 2;
 
+       // Assuming lower field first
+       // Special care is taken to make sure the b_frame is aligned to the correct field.
+       // field 0 = lower field and y should be odd (y is 0-based).
+       // field 1 = upper field and y should be even.
+       if ( ( field > -1 ) && ( y % 2 == field ) )
+       {
+               if ( y == 0 )
+                       p_dest += stride_dest;
+               else
+                       p_dest -= stride_dest;
+       }
+
+       // On the second field, use the other lines from b_frame
+       if ( field == 1 )
+       {
+               p_src += stride_src;
+               if ( p_alpha )
+                       p_alpha += stride_src / 2;
+               height_src--;
+       }
+
        uint8_t *p = p_src;
        uint8_t *q = p_dest;
        uint8_t *o = p_dest;
@@ -220,14 +277,16 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid
        uint8_t UV;
        uint8_t a;
        float value;
+       int step = ( field > -1 ) ? 2 : 1;
 
        // now do the compositing only to cropped extents
-       for ( i = 0; i < height_src; i++ )
+       for ( i = 0; i < height_src; i += step )
        {
-               p = p_src;
-               q = p_dest;
-               o = p_dest;
-               z = p_alpha;
+               p = &p_src[ i * stride_src ];
+               q = &p_dest[ i * stride_dest ];
+               o = &p_dest[ i * stride_dest ];
+               if ( p_alpha )
+                       z = &p_alpha[ i * stride_src / 2 ];
 
                for ( j = 0; j < width_src; j ++ )
                {
@@ -238,12 +297,101 @@ static int composite_yuv( uint8_t *p_dest, mlt_image_format format_dest, int wid
                        *o ++ = (uint8_t)( Y * value + *q++ * ( 1 - value ) );
                        *o ++ = (uint8_t)( UV * value + *q++ * ( 1 - value ) );
                }
+       }
 
-               p_src += stride_src;
-               p_dest += stride_dest;
-               if ( p_alpha )
-                       p_alpha += stride_src / 2;
+       return ret;
+}
+
+
+/** Get the properly sized image from b_frame.
+*/
+
+static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
+{
+       int ret = 0;
+       mlt_image_format format = mlt_image_yuv422;
+
+       // Initialise the scaled dimensions from the computed
+       geometry->sw = geometry->w;
+       geometry->sh = geometry->h;
+
+       // Compute the dimensioning rectangle
+       mlt_properties b_props = mlt_frame_properties( b_frame );
+       mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
+       mlt_properties properties = mlt_transition_properties( this );
+
+       if ( mlt_properties_get( properties, "distort" ) == NULL )
+       {
+               // Now do additional calcs based on real_width/height etc
+               int normalised_width = geometry->w;
+               int normalised_height = geometry->h;
+               //int real_width = get_value( b_props, "real_width", "width" );
+               int real_height = get_value( b_props, "real_height", "height" );
+               double input_ar = mlt_frame_get_aspect_ratio( b_frame );
+               double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
+               //int scaled_width = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_width;
+               //int scaled_height = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_height;
+               int scaled_width = ( float )geometry->nw / geometry->nh / output_ar * real_height * input_ar;
+               int scaled_height = real_height;
+               //fprintf( stderr, "composite: real %dx%d scaled %dx%d normalised %dx%d\n", real_width, real_height, scaled_width, scaled_height, normalised_width, normalised_height );
+
+               // Now ensure that our images fit in the normalised frame
+               if ( scaled_width > normalised_width )
+               {
+                       scaled_height = scaled_height * normalised_width / scaled_width;
+                       scaled_width = normalised_width;
+               }
+               if ( scaled_height > normalised_height )
+               {
+                       scaled_width = scaled_width * normalised_height / scaled_height;
+                       scaled_height = normalised_height;
+               }
+
+               // Special case
+               if ( scaled_height == normalised_height )
+                       scaled_width = normalised_width;
+
+               // Now we need to align to the geometry
+               if ( scaled_width <= geometry->w && scaled_height <= geometry->h )
+               {
+                       // Save the new scaled dimensions
+                       geometry->sw = scaled_width;
+                       geometry->sh = scaled_height;
+                       
+                       mlt_properties_set( b_props, "distort", "true" );
+               }
+               else
+               {
+                       mlt_properties_set( b_props, "distort", "true" );
+               }
        }
+       else
+       {
+               // We want to ensure that we bypass resize now...
+               mlt_properties_set( b_props, "distort", "true" );
+       }
+
+       // Take into consideration alignment for optimisation
+       alignment_calculate( geometry );
+
+       // Adjust to consumer scale
+       int x = geometry->x * *width / geometry->nw + 0.5;
+       int y = geometry->y * *height / geometry->nh + 0.5;
+       *width = geometry->sw * *width / geometry->nw;
+       *height = geometry->sh * *height / geometry->nh;
+
+       x -= x % 2;
+
+       //fprintf( stderr, "composite calculated %d,%d:%dx%d\n", x, y, *width, *height );
+
+       // optimization points - no work to do
+       if ( *width <= 0 || *height <= 0 )
+               return 1;
+
+       if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
+               return 1;
+
+       ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 /* writable */ );
 
        return ret;
 }
@@ -257,11 +405,17 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
        // Get the b frame from the stack
        mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
 
+       // This compositer is yuv422 only
+       *format = mlt_image_yuv422;
+
        // Get the image from the a frame
        mlt_frame_get_image( a_frame, image, format, width, height, 1 );
 
        if ( b_frame != NULL )
        {
+               // Get the properties of the a frame
+               mlt_properties a_props = mlt_frame_properties( a_frame );
+
                // Get the properties of the b frame
                mlt_properties b_props = mlt_frame_properties( b_frame );
 
@@ -278,23 +432,56 @@ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_f
 
                // Calculate the position
                float position = position_calculate( this, a_frame );
+               float delta = delta_calculate( this, a_frame );
+
+               // Obtain the normalised width and height from the a_frame
+               int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
+               int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
 
                // Now parse the geometries
-               geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ) );
-               geometry_parse( &end, &start, mlt_properties_get( properties, "end" ) );
+               geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
+               geometry_parse( &end, &start, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
 
-               // Do the calculation
-               geometry_calculate( &result, &start, &end, position );
+               // Now parse the alignment
+               result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
+               result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
 
                // Since we are the consumer of the b_frame, we must pass along these
                // consumer properties from the a_frame
-               mlt_properties_set_double( b_props, "consumer_aspect_ratio",
-                       mlt_properties_get_double( mlt_frame_properties( a_frame ), "consumer_aspect_ratio" ) );
-               mlt_properties_set_double( b_props, "consumer_scale",
-                       mlt_properties_get_double( mlt_frame_properties( a_frame ), "consumer_scale" ) );
+               mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
+               mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) );
+
+               // Do the calculation
+               geometry_calculate( &result, &start, &end, position );
+
+               // Get the image from the b frame
+               uint8_t *image_b;
+               int width_b = *width;
+               int height_b = *height;
                
-               // Composite the b_frame on the a_frame
-               composite_yuv( *image, *format, *width, *height, b_frame, result );
+               if ( get_b_frame_image( b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
+               {
+                       uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
+                       int progressive = mlt_properties_get_int( a_props, "progressive" ) ||
+                                       mlt_properties_get_int( a_props, "consumer_progressive" ) ||
+                                       mlt_properties_get_int( properties, "progressive" );
+                       int field;
+
+                       for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
+                       {
+                               // Assume lower field (0) first
+                               float field_position = position + field * delta;
+                               
+                               // Do the calculation
+                               geometry_calculate( &result, &start, &end, field_position );
+
+                               // Align
+                               alignment_calculate( &result );
+
+                               // Composite the b_frame on the a_frame
+                               composite_yuv( *image, *width, *height, image_b, width_b, height_b, alpha, result, progressive ? -1 : field );
+                       }
+               }
        }
 
        return 0;
@@ -322,7 +509,7 @@ mlt_transition transition_composite_init( char *arg )
        if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
        {
                this->process = composite_process;
-               mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85,5:10x10" );
+               mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" );
                mlt_properties_set( mlt_transition_properties( this ), "end", "" );
        }
        return this;