/* * transition_composite.c -- compose one image over another using alpha channel * Copyright (C) 2003-2004 Ushodaya Enterprises Limited * Author: Dan Dennedy * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "transition_composite.h" #include #include #include #include #include #include /** Geometry struct. */ struct geometry_s { float position; float mix; int nw; // normalised width int nh; // normalised height int sw; // scaled width, not including consumer scale based upon w/nw int sh; // scaled height, not including consumer scale based upon h/nh float x; float y; float w; float h; int halign; // horizontal alignment: 0=left, 1=center, 2=right int valign; // vertical alignment: 0=top, 1=middle, 2=bottom int distort; struct geometry_s *next; }; /** Parse a value from a geometry string. */ static float parse_value( char **ptr, int normalisation, char delim, float defaults ) { float value = defaults; if ( *ptr != NULL && **ptr != '\0' ) { char *end = NULL; value = strtod( *ptr, &end ); if ( end != NULL ) { if ( *end == '%' ) value = ( value / 100.0 ) * normalisation; while ( *end == delim || *end == '%' ) end ++; } *ptr = end; } return value; } /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be expressed as a percentage by appending a % after the value, otherwise values are assumed to be relative to the normalised dimensions of the consumer. */ static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh ) { // Assign normalised width and height geometry->nw = nw; geometry->nh = nh; // Assign from defaults if available if ( defaults != NULL ) { geometry->x = defaults->x; geometry->y = defaults->y; geometry->w = geometry->sw = defaults->w; geometry->h = geometry->sh = defaults->h; geometry->distort = defaults->distort; geometry->mix = defaults->mix; defaults->next = geometry; } else { geometry->mix = 100; } // Parse the geomtry string if ( property != NULL && strcmp( property, "" ) ) { char *ptr = property; geometry->x = parse_value( &ptr, nw, ',', geometry->x ); geometry->y = parse_value( &ptr, nh, ':', geometry->y ); geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w ); geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h ); if ( *ptr == '!' ) { geometry->distort = 1; ptr ++; if ( *ptr == ':' ) ptr ++; } geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix ); } } /** Calculate real geometry. */ static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position ) { // Search in for position struct geometry_s *out = in->next; if ( position >= 1.0 ) { int section = floor( position ); position -= section; if ( section % 2 == 1 ) position = 1.0 - position; } while ( out->next != NULL ) { if ( position >= in->position && position < out->position ) break; in = out; out = in->next; } position = ( position - in->position ) / ( out->position - in->position ); // Calculate this frames geometry output->nw = in->nw; output->nh = in->nh; output->x = in->x + ( out->x - in->x ) * position; output->y = in->y + ( out->y - in->y ) * position; output->w = in->w + ( out->w - in->w ) * position; output->h = in->h + ( out->h - in->h ) * position; output->mix = in->mix + ( out->mix - in->mix ) * position; output->distort = in->distort; output->x = ( int )floor( output->x ) & 0xfffffffe; output->w = ( int )floor( output->w ) & 0xfffffffe; output->sw &= 0xfffffffe; } void transition_destroy_keys( void *arg ) { struct geometry_s *ptr = arg; struct geometry_s *next = NULL; while ( ptr != NULL ) { next = ptr->next; free( ptr ); ptr = next; } } static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height ) { // Loop variable for property interrogation int i = 0; // Get the properties of the transition mlt_properties properties = mlt_transition_properties( this ); // Get the in and out position mlt_position in = mlt_transition_get_in( this ); mlt_position out = mlt_transition_get_out( this ); // Create the start struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) ); // Create the end (we always need two entries) struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) ); // Pointer struct geometry_s *ptr = start; // Parse the start property geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height ); // Parse the keys in between for ( i = 0; i < mlt_properties_count( properties ); i ++ ) { // Get the name of the property char *name = mlt_properties_get_name( properties, i ); // Check that it's valid if ( !strncmp( name, "key[", 4 ) ) { // Get the value of the property char *value = mlt_properties_get_value( properties, i ); // Determine the frame number int frame = atoi( name + 4 ); // Determine the position float position = 0; if ( frame >= 0 && frame < ( out - in ) ) position = ( float )frame / ( float )( out - in + 1 ); else if ( frame < 0 && - frame < ( out - in ) ) position = ( float )( out - in + frame ) / ( float )( out - in + 1 ); // For now, we'll exclude all keys received out of order if ( position > ptr->position ) { // Create a new geometry struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) ); // Parse and add to the list geometry_parse( temp, ptr, value, normalised_width, normalised_height ); // Assign the position temp->position = position; // Allow the next to be appended after this one ptr = temp; } else { fprintf( stderr, "Key out of order - skipping %s\n", name ); } } } // Parse the end geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height ); if ( out > 0 ) end->position = ( float )( out - in ) / ( float )( out - in + 1 ); else end->position = 1; // Assign to properties to ensure we get destroyed mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL ); return start; } /** Parse the alignment properties into the geometry. */ static int alignment_parse( char* align ) { int ret = 0; if ( align == NULL ); else if ( isdigit( align[ 0 ] ) ) ret = atoi( align ); else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' ) ret = 1; else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' ) ret = 2; return ret; } /** Adjust position according to scaled size and alignment properties. */ static void alignment_calculate( struct geometry_s *geometry ) { geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2; geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2; } /** Calculate the position for this frame. */ static float position_calculate( mlt_transition this, mlt_frame frame ) { // Get the in and out position mlt_position in = mlt_transition_get_in( this ); mlt_position out = mlt_transition_get_out( this ); // Get the position mlt_position position = mlt_frame_get_position( frame ); // Now do the calcs return ( float )( position - in ) / ( float )( out - in + 1 ); } /** Calculate the field delta for this frame - position between two frames. */ static inline float delta_calculate( mlt_transition this, mlt_frame frame ) { // Get the in and out position mlt_position in = mlt_transition_get_in( this ); mlt_position out = mlt_transition_get_out( this ); // Get the position of the frame mlt_position position = mlt_frame_get_position( frame ); // Now do the calcs float x = ( float )( position - in ) / ( float )( out - in + 1 ); float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 ); return ( y - x ) / 2.0; } static int get_value( mlt_properties properties, char *preferred, char *fallback ) { int value = mlt_properties_get_int( properties, preferred ); if ( value == 0 ) value = mlt_properties_get_int( properties, fallback ); return value; } /** Composite function. */ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field ) { int ret = 0; int i, j; int x_src = 0, y_src = 0; int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 ); int stride_src = width_src * bpp; int stride_dest = width_dest * bpp; // Adjust to consumer scale int x = geometry.x * width_dest / geometry.nw; int y = geometry.y * height_dest / geometry.nh; x &= 0xfffffffe; width_src &= 0xfffffffe; // optimization points - no work to do if ( width_src <= 0 || height_src <= 0 ) return ret; if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) ) return ret; // crop overlay off the left edge of frame if ( x < 0 ) { x_src = -x; width_src -= x_src; x = 0; } // crop overlay beyond right edge of frame else if ( x + width_src > width_dest ) width_src = width_dest - x; // crop overlay off the top edge of the frame if ( y < 0 ) { y_src = -y; height_src -= y_src; } // crop overlay below bottom edge of frame else if ( y + height_src > height_dest ) height_src = height_dest - y; // offset pointer into overlay buffer based on cropping p_src += x_src * bpp + y_src * stride_src; // offset pointer into frame buffer based upon positive coordinates only! p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest; // offset pointer into alpha channel based upon cropping if ( p_alpha ) p_alpha += x_src + y_src * stride_src / bpp; // Assuming lower field first // Special care is taken to make sure the b_frame is aligned to the correct field. // field 0 = lower field and y should be odd (y is 0-based). // field 1 = upper field and y should be even. if ( ( field > -1 ) && ( y % 2 == field ) ) { //fprintf( stderr, "field %d y %d\n", field, y ); if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) ) p_dest += stride_dest; else p_dest -= stride_dest; } // On the second field, use the other lines from b_frame if ( field == 1 ) { p_src += stride_src; if ( p_alpha ) p_alpha += stride_src / bpp; height_src--; } uint8_t *p = p_src; uint8_t *q = p_dest; uint8_t *o = p_dest; uint8_t *z = p_alpha; uint8_t a; int32_t value; int step = ( field > -1 ) ? 2 : 1; stride_src = stride_src * step; int alpha_stride = stride_src / bpp; stride_dest = stride_dest * step; // now do the compositing only to cropped extents for ( i = 0; i < height_src; i += step ) { p = p_src; q = p_dest; o = q; z = p_alpha; for ( j = 0; j < width_src; j ++ ) { a = ( z == NULL ) ? 255 : *z ++; value = ( weight * ( a + 1 ) ) >> 8; *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16; *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16; } p_src += stride_src; p_dest += stride_dest; if ( p_alpha ) p_alpha += alpha_stride; } return ret; } /** Get the properly sized image from b_frame. */ static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry ) { int ret = 0; mlt_image_format format = mlt_image_yuv422; // Get the properties objects mlt_properties b_props = mlt_frame_properties( b_frame ); mlt_properties properties = mlt_transition_properties( this ); if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 ) { // Adjust b_frame pixel aspect int normalised_width = geometry->w; int normalised_height = geometry->h; int real_width = get_value( b_props, "real_width", "width" ); int real_height = get_value( b_props, "real_height", "height" ); double input_ar = mlt_frame_get_aspect_ratio( b_frame ); double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" ); int scaled_width = real_width; int scaled_height = real_height; double output_sar = ( double ) geometry->nw / geometry->nh / output_ar; // If the output is fat pixels (NTSC) then stretch our input horizontally // derived from: output_sar / input_sar * real_width scaled_width = output_sar * real_height * input_ar; // Now ensure that our images fit in the normalised frame if ( scaled_width > normalised_width ) { scaled_height = scaled_height * normalised_width / scaled_width; scaled_width = normalised_width; } if ( scaled_height > normalised_height ) { scaled_width = scaled_width * normalised_height / scaled_height; scaled_height = normalised_height; } // Now apply the fill // TODO: Should combine fill/distort in one property if ( mlt_properties_get( properties, "fill" ) != NULL ) { scaled_width = ( geometry->w / scaled_width ) * scaled_width; scaled_height = ( geometry->h / scaled_height ) * scaled_height; } // Save the new scaled dimensions geometry->sw = scaled_width; geometry->sh = scaled_height; } else { geometry->sw = geometry->w; geometry->sh = geometry->h; } // We want to ensure that we bypass resize now... mlt_properties_set( b_props, "distort", "true" ); // Take into consideration alignment for optimisation alignment_calculate( geometry ); // Adjust to consumer scale int x = geometry->x * *width / geometry->nw; int y = geometry->y * *height / geometry->nh; *width = geometry->sw * *width / geometry->nw; *height = geometry->sh * *height / geometry->nh; x -= x % 2; // optimization points - no work to do if ( *width <= 0 || *height <= 0 ) return 1; if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) ) return 1; ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 ); return ret; } struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position ) { // Get the properties from the transition mlt_properties properties = mlt_transition_properties( this ); // Get the properties from the frame mlt_properties a_props = mlt_frame_properties( a_frame ); // Structures for geometry struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL ); // Now parse the geometries if ( start == NULL ) { // Obtain the normalised width and height from the a_frame int normalised_width = mlt_properties_get_int( a_props, "normalised_width" ); int normalised_height = mlt_properties_get_int( a_props, "normalised_height" ); // Parse the transitions properties start = transition_parse_keys( this, normalised_width, normalised_height ); } // Do the calculation geometry_calculate( result, start, position ); // Now parse the alignment result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) ); result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) ); return start; } mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame ) { // Create a frame to return mlt_frame b_frame = mlt_frame_init( ); // Get the properties of the a frame mlt_properties a_props = mlt_frame_properties( a_frame ); // Get the properties of the b frame mlt_properties b_props = mlt_frame_properties( b_frame ); // Get the position float position = position_calculate( this, a_frame ); // Destination image uint8_t *dest = NULL; // Get the image and dimensions uint8_t *image = mlt_properties_get_data( a_props, "image", NULL ); int width = mlt_properties_get_int( a_props, "width" ); int height = mlt_properties_get_int( a_props, "height" ); // Pointers for copy operation uint8_t *p; uint8_t *q; uint8_t *r; // Corrdinates int w = 0; int h = 0; int x = 0; int y = 0; // Will need to know region to copy struct geometry_s result; // Calculate the region now composite_calculate( &result, this, a_frame, position ); // Need to scale down to actual dimensions x = result.x * width / result.nw ; y = result.y * height / result.nh; w = result.w * width / result.nw; h = result.h * height / result.nh; x &= 0xfffffffe; w &= 0xfffffffe; // Now we need to create a new destination image dest = mlt_pool_alloc( w * h * 2 ); // Copy the region of the image p = image + y * width * 2 + x * 2; q = dest; r = dest + w * h * 2; while ( q < r ) { memcpy( q, p, w * 2 ); q += w * 2; p += width * 2; } // Assign to the new frame mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL ); mlt_properties_set_int( b_props, "width", w ); mlt_properties_set_int( b_props, "height", h ); // Return the frame return b_frame; } /** Get the image. */ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ) { // Get the b frame from the stack mlt_frame b_frame = mlt_frame_pop_frame( a_frame ); // Get the transition from the a frame mlt_transition this = mlt_frame_pop_service( a_frame ); // This compositer is yuv422 only *format = mlt_image_yuv422; // Get the image from the a frame mlt_frame_get_image( a_frame, image, format, width, height, 1 ); if ( b_frame != NULL ) { // Get the properties of the a frame mlt_properties a_props = mlt_frame_properties( a_frame ); // Get the properties of the b frame mlt_properties b_props = mlt_frame_properties( b_frame ); // Get the properties from the transition mlt_properties properties = mlt_transition_properties( this ); // Structures for geometry struct geometry_s result; // Calculate the position float position = mlt_properties_get_double( b_props, "relative_position" ); float delta = delta_calculate( this, a_frame ); // Do the calculation struct geometry_s *start = composite_calculate( &result, this, a_frame, position ); // Since we are the consumer of the b_frame, we must pass along these // consumer properties from the a_frame mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) ); mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) ); // Get the image from the b frame uint8_t *image_b = NULL; int width_b = *width; int height_b = *height; if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) { uint8_t *dest = *image; uint8_t *src = image_b; int bpp = 2; uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame ); int progressive = mlt_properties_get_int( a_props, "progressive" ) || mlt_properties_get_int( a_props, "consumer_progressive" ) || mlt_properties_get_int( properties, "progressive" ); int field; for ( field = 0; field < ( progressive ? 1 : 2 ); field++ ) { // Assume lower field (0) first float field_position = position + field * delta; // Do the calculation if we need to geometry_calculate( &result, start, field_position ); // Align alignment_calculate( &result ); // Composite the b_frame on the a_frame composite_yuv( dest, *width, *height, bpp, src, width_b, height_b, alpha, result, progressive ? -1 : field ); } } } return 0; } /** Composition transition processing. */ static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame ) { // Propogate the transition properties to the b frame mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, a_frame ) ); mlt_frame_push_service( a_frame, this ); mlt_frame_push_get_image( a_frame, transition_get_image ); mlt_frame_push_frame( a_frame, b_frame ); return a_frame; } /** Constructor for the filter. */ mlt_transition transition_composite_init( char *arg ) { mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 ); if ( this != NULL && mlt_transition_init( this, NULL ) == 0 ) { this->process = composite_process; mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" ); } return this; }