/* * transition_composite.c -- compose one image over another using alpha channel * Copyright (C) 2003-2004 Ushodaya Enterprises Limited * Author: Dan Dennedy * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software Foundation, * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ #include "transition_composite.h" #include #include #include #include #include #include typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness ); /* mmx function declarations */ #ifdef USE_MMX void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness ); int composite_have_mmx( void ); #endif /** Geometry struct. */ struct geometry_s { struct mlt_geometry_item_s item; int nw; // normalised width int nh; // normalised height int sw; // scaled width, not including consumer scale based upon w/nw int sh; // scaled height, not including consumer scale based upon h/nh int halign; // horizontal alignment: 0=left, 1=center, 2=right int valign; // vertical alignment: 0=top, 1=middle, 2=bottom }; /** Parse the alignment properties into the geometry. */ static int alignment_parse( char* align ) { int ret = 0; if ( align == NULL ); else if ( isdigit( align[ 0 ] ) ) ret = atoi( align ); else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' ) ret = 1; else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' ) ret = 2; return ret; } /** Calculate real geometry. */ static void geometry_calculate( mlt_transition this, struct geometry_s *output, float position ) { mlt_properties properties = MLT_TRANSITION_PROPERTIES( this ); mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL ); int length = mlt_geometry_get_length( geometry ); // Allow wrapping if ( position >= length && length != 0 ) { int section = position / length; position -= section * length; if ( section % 2 == 1 ) position = length - position; } // Fetch the key for the position mlt_geometry_fetch( geometry, &output->item, position ); } static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height ) { // Loop variable for property interrogation int i = 0; // Get the properties of the transition mlt_properties properties = MLT_TRANSITION_PROPERTIES( this ); // Create an empty geometries object mlt_geometry geometry = mlt_geometry_init( ); // Get the in and out position mlt_position in = mlt_transition_get_in( this ); mlt_position out = mlt_transition_get_out( this ); // Get the new style geometry string char *property = mlt_properties_get( properties, "geometry" ); // Parse the geometry if we have one mlt_geometry_parse( geometry, property, out - in + 1, normalised_width, normalised_height ); // Check if we're using the old style geometry if ( property == NULL ) { // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for // practical use - while deprecated, it has been slightly extended too - keys can now // be specified out of order, and can be blanked or NULL to simulate removal // Structure to use for parsing and inserting struct mlt_geometry_item_s item; // Parse the start property item.frame = 0; if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 ) mlt_geometry_insert( geometry, &item ); // Parse the keys in between for ( i = 0; i < mlt_properties_count( properties ); i ++ ) { // Get the name of the property char *name = mlt_properties_get_name( properties, i ); // Check that it's valid if ( !strncmp( name, "key[", 4 ) ) { // Get the value of the property char *value = mlt_properties_get_value( properties, i ); // Determine the frame number item.frame = atoi( name + 4 ); // Parse and add to the list if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 ) mlt_geometry_insert( geometry, &item ); else fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value ); } } // Parse the end item.frame = -1; if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 ) mlt_geometry_insert( geometry, &item ); } return geometry; } /** Adjust position according to scaled size and alignment properties. */ static void alignment_calculate( struct geometry_s *geometry ) { geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2; geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2; } /** Calculate the position for this frame. */ static int position_calculate( mlt_transition this, mlt_position position ) { // Get the in and out position mlt_position in = mlt_transition_get_in( this ); // Now do the calcs return position - in; } /** Calculate the field delta for this frame - position between two frames. */ static inline float delta_calculate( mlt_transition this, mlt_frame frame ) { // Get the in and out position mlt_position in = mlt_transition_get_in( this ); mlt_position out = mlt_transition_get_out( this ); float length = out - in + 1; // Get the position of the frame char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" ); mlt_position position = mlt_properties_get_position( MLT_FRAME_PROPERTIES( frame ), name ); // Now do the calcs float x = ( float )( position - in ) / length; float y = ( float )( position + 1 - in ) / length; return length * ( y - x ) / 2.0; } static int get_value( mlt_properties properties, char *preferred, char *fallback ) { int value = mlt_properties_get_int( properties, preferred ); if ( value == 0 ) value = mlt_properties_get_int( properties, fallback ); return value; } /** A linear threshold determination function. */ static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a ) { if ( a < edge1 ) return 0; if ( a >= edge2 ) return 0x10000; return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 ); } /** A smoother, non-linear threshold determination function. */ static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a ) { if ( a < edge1 ) return 0; if ( a >= edge2 ) return 0x10000; a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 ); return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16; } /** Load the luma map from PGM stream. */ static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height ) { uint8_t *data = NULL; while (1) { char line[128]; char comment[128]; int i = 2; int maxval; int bpp; uint16_t *p; line[127] = '\0'; // get the magic code if ( fgets( line, 127, f ) == NULL ) break; // skip comments while ( sscanf( line, " #%s", comment ) > 0 ) if ( fgets( line, 127, f ) == NULL ) break; if ( line[0] != 'P' || line[1] != '5' ) break; // skip white space and see if a new line must be fetched for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ ); if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL ) break; // skip comments while ( sscanf( line, " #%s", comment ) > 0 ) if ( fgets( line, 127, f ) == NULL ) break; // get the dimensions if ( line[0] == 'P' ) i = sscanf( line, "P5 %d %d %d", width, height, &maxval ); else i = sscanf( line, "%d %d %d", width, height, &maxval ); // get the height value, if not yet if ( i < 2 ) { if ( fgets( line, 127, f ) == NULL ) break; // skip comments while ( sscanf( line, " #%s", comment ) > 0 ) if ( fgets( line, 127, f ) == NULL ) break; i = sscanf( line, "%d", height ); if ( i == 0 ) break; else i = 2; } // get the maximum gray value, if not yet if ( i < 3 ) { if ( fgets( line, 127, f ) == NULL ) break; // skip comments while ( sscanf( line, " #%s", comment ) > 0 ) if ( fgets( line, 127, f ) == NULL ) break; i = sscanf( line, "%d", &maxval ); if ( i == 0 ) break; } // determine if this is one or two bytes per pixel bpp = maxval > 255 ? 2 : 1; // allocate temporary storage for the raw data data = mlt_pool_alloc( *width * *height * bpp ); if ( data == NULL ) break; // read the raw data if ( fread( data, *width * *height * bpp, 1, f ) != 1 ) break; // allocate the luma bitmap *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) ); if ( *map == NULL ) break; // proces the raw data into the luma bitmap for ( i = 0; i < *width * *height * bpp; i += bpp ) { if ( bpp == 1 ) *p++ = data[ i ] << 8; else *p++ = ( data[ i ] << 8 ) + data[ i + 1 ]; } break; } if ( data != NULL ) mlt_pool_release( data ); } /** Generate a luma map from any YUV image. */ static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height ) { int i; // allocate the luma bitmap uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) ); if ( *map == NULL ) return; // proces the image data into the luma bitmap for ( i = 0; i < width * height * 2; i += 2 ) *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219 } /** Composite a source line over a destination line */ static inline void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness ) { register int j; int a, mix; for ( j = 0; j < width_src; j ++ ) { a = ( alpha == NULL ) ? 255 : *alpha ++; mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight ); mix = ( mix * ( a + 1 ) ) >> 8; *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16; dest++; *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16; dest++; } } /** Composite function. */ static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn ) { int ret = 0; int i; int x_src = 0, y_src = 0; int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 ); int step = ( field > -1 ) ? 2 : 1; int bpp = 2; int stride_src = width_src * bpp; int stride_dest = width_dest * bpp; // Adjust to consumer scale int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw ); int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh ); int x_uneven = x & 1; // optimization points - no work to do if ( width_src <= 0 || height_src <= 0 ) return ret; if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) ) return ret; // crop overlay off the left edge of frame if ( x < 0 ) { x_src = -x; width_src -= x_src; x = 0; } // crop overlay beyond right edge of frame if ( x + width_src > width_dest ) width_src = width_dest - x; // crop overlay off the top edge of the frame if ( y < 0 ) { y_src = -y; height_src -= y_src; y = 0; } // crop overlay below bottom edge of frame if ( y + height_src > height_dest ) height_src = height_dest - y; // offset pointer into overlay buffer based on cropping p_src += x_src * bpp + y_src * stride_src; // offset pointer into frame buffer based upon positive coordinates only! p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest; // offset pointer into alpha channel based upon cropping if ( p_alpha ) p_alpha += x_src + y_src * stride_src / bpp; // offset pointer into luma channel based upon cropping if ( p_luma ) p_luma += x_src + y_src * stride_src / bpp; // Assuming lower field first // Special care is taken to make sure the b_frame is aligned to the correct field. // field 0 = lower field and y should be odd (y is 0-based). // field 1 = upper field and y should be even. if ( ( field > -1 ) && ( y % 2 == field ) ) { //fprintf( stderr, "field %d y %d\n", field, y ); if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) ) p_dest += stride_dest; else p_dest -= stride_dest; } // On the second field, use the other lines from b_frame if ( field == 1 ) { p_src += stride_src; if ( p_alpha ) p_alpha += stride_src / bpp; height_src--; } stride_src *= step; stride_dest *= step; int alpha_stride = stride_src / bpp; // Make sure than x and w are even if ( x_uneven ) { p_src += 2; width_src --; } // now do the compositing only to cropped extents if ( line_fn != NULL ) { for ( i = 0; i < height_src; i += step ) { line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness ); p_src += stride_src; p_dest += stride_dest; if ( p_alpha ) p_alpha += alpha_stride; if ( p_luma ) p_luma += alpha_stride; } } else { for ( i = 0; i < height_src; i += step ) { composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness ); p_src += stride_src; p_dest += stride_dest; if ( p_alpha ) p_alpha += alpha_stride; if ( p_luma ) p_luma += alpha_stride; } } return ret; } /** Scale 16bit greyscale luma map using nearest neighbor. */ static inline void scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height ) { register int i, j; register int x_step = ( src_width << 16 ) / dest_width; register int y_step = ( src_height << 16 ) / dest_height; register int x, y = 0; for ( i = 0; i < dest_height; i++ ) { const uint16_t *src = src_buf + ( y >> 16 ) * src_width; x = 0; for ( j = 0; j < dest_width; j++ ) { *dest_buf++ = src[ x >> 16 ]; x += x_step; } y += y_step; } } static uint16_t* get_luma( mlt_properties properties, int width, int height ) { // The cached luma map information int luma_width = mlt_properties_get_int( properties, "_luma.width" ); int luma_height = mlt_properties_get_int( properties, "_luma.height" ); uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL ); // If the filename property changed, reload the map char *resource = mlt_properties_get( properties, "luma" ); char temp[ 512 ]; if ( strchr( resource, '%' ) ) { sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 ); resource = temp; } if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) ) { uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL ); luma_width = mlt_properties_get_int( properties, "_luma.orig_width" ); luma_height = mlt_properties_get_int( properties, "_luma.orig_height" ); // Load the original luma once if ( orig_bitmap == NULL ) { char *extension = extension = strrchr( resource, '.' ); // See if it is a PGM if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 ) { // Open PGM FILE *f = fopen( resource, "r" ); if ( f != NULL ) { // Load from PGM luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height ); fclose( f ); // Remember the original size for subsequent scaling mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL ); mlt_properties_set_int( properties, "_luma.orig_width", luma_width ); mlt_properties_set_int( properties, "_luma.orig_height", luma_height ); } } else { // Get the factory producer service char *factory = mlt_properties_get( properties, "factory" ); // Create the producer mlt_producer producer = mlt_factory_producer( factory, resource ); // If we have one if ( producer != NULL ) { // Get the producer properties mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer ); // Ensure that we loop mlt_properties_set( producer_properties, "eof", "loop" ); // Now pass all producer. properties on the transition down mlt_properties_pass( producer_properties, properties, "luma." ); // We will get the alpha frame from the producer mlt_frame luma_frame = NULL; // Get the luma frame if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 ) { uint8_t *luma_image; mlt_image_format luma_format = mlt_image_yuv422; // Get image from the luma producer mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" ); mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 ); // Generate the luma map if ( luma_image != NULL && luma_format == mlt_image_yuv422 ) luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height ); // Remember the original size for subsequent scaling mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL ); mlt_properties_set_int( properties, "_luma.orig_width", luma_width ); mlt_properties_set_int( properties, "_luma.orig_height", luma_height ); // Cleanup the luma frame mlt_frame_close( luma_frame ); } // Cleanup the luma producer mlt_producer_close( producer ); } } } // Scale luma map luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) ); scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height ); // Remember the scaled luma size to prevent unnecessary scaling mlt_properties_set_int( properties, "_luma.width", width ); mlt_properties_set_int( properties, "_luma.height", height ); mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL ); } return luma_bitmap; } /** Get the properly sized image from b_frame. */ static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry ) { int ret = 0; mlt_image_format format = mlt_image_yuv422; // Get the properties objects mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame ); mlt_properties properties = MLT_TRANSITION_PROPERTIES( this ); if ( mlt_properties_get( properties, "distort" ) == NULL && mlt_properties_get( b_props, "distort" ) == NULL && geometry->item.distort == 0 ) { // Adjust b_frame pixel aspect int normalised_width = geometry->item.w; int normalised_height = geometry->item.h; int real_width = get_value( b_props, "real_width", "width" ); int real_height = get_value( b_props, "real_height", "height" ); double input_ar = mlt_frame_get_aspect_ratio( b_frame ); double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" ); int scaled_width = input_ar / output_ar * real_width; int scaled_height = real_height; // Now ensure that our images fit in the normalised frame if ( scaled_width > normalised_width ) { scaled_height = scaled_height * normalised_width / scaled_width; scaled_width = normalised_width; } if ( scaled_height > normalised_height ) { scaled_width = scaled_width * normalised_height / scaled_height; scaled_height = normalised_height; } // Now apply the fill // TODO: Should combine fill/distort in one property if ( mlt_properties_get( properties, "fill" ) != NULL ) { scaled_width = ( geometry->item.w / scaled_width ) * scaled_width; scaled_height = ( geometry->item.h / scaled_height ) * scaled_height; } // Save the new scaled dimensions geometry->sw = scaled_width; geometry->sh = scaled_height; } else { geometry->sw = geometry->item.w; geometry->sh = geometry->item.h; } // We want to ensure that we bypass resize now... mlt_properties_set( b_props, "distort", "true" ); // Take into consideration alignment for optimisation if ( !mlt_properties_get_int( properties, "titles" ) ) alignment_calculate( geometry ); // Adjust to consumer scale int x = geometry->item.x * *width / geometry->nw; int y = geometry->item.y * *height / geometry->nh; *width = geometry->sw * *width / geometry->nw; *height = geometry->sh * *height / geometry->nh; //x = ( x | 1 ) ^ 1; // optimization points - no work to do if ( *width < 1 || *height < 1 ) return 1; if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) ) return 1; ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 ); return ret; } static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, float position ) { // Get the properties from the transition mlt_properties properties = MLT_TRANSITION_PROPERTIES( this ); // Get the properties from the frame mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); // Structures for geometry mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL ); // Obtain the normalised width and height from the a_frame int normalised_width = mlt_properties_get_int( a_props, "normalised_width" ); int normalised_height = mlt_properties_get_int( a_props, "normalised_height" ); // Now parse the geometries if ( start == NULL ) { // Parse the transitions properties start = transition_parse_keys( this, normalised_width, normalised_height ); // Assign to properties to ensure we get destroyed mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL ); } else { int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1; mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height ); } // Do the calculation geometry_calculate( this, result, position ); // Assign normalised info result->nw = normalised_width; result->nh = normalised_height; // Now parse the alignment result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) ); result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) ); return start; } static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length ) { uint8_t *end = src + length; while ( src < end ) { *dest ++ = *src ++; *dest ++ = *src ++; } } mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position ) { // Create a frame to return mlt_frame b_frame = mlt_frame_init( ); // Get the properties of the a frame mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); // Get the properties of the b frame mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame ); // Get the position int position = position_calculate( this, frame_position ); // Destination image uint8_t *dest = NULL; // Get the image and dimensions uint8_t *image = mlt_properties_get_data( a_props, "image", NULL ); int width = mlt_properties_get_int( a_props, "width" ); int height = mlt_properties_get_int( a_props, "height" ); // Pointers for copy operation uint8_t *p; // Coordinates int w = 0; int h = 0; int x = 0; int y = 0; int ss = 0; int ds = 0; // Will need to know region to copy struct geometry_s result; float delta = delta_calculate( this, a_frame ); // Calculate the region now composite_calculate( this, &result, a_frame, position + delta / 2 ); // Need to scale down to actual dimensions x = rint( 0.5 + result.item.x * width / result.nw ); y = rint( 0.5 + result.item.y * height / result.nh ); w = rint( 0.5 + result.item.w * width / result.nw ); h = rint( 0.5 + result.item.h * height / result.nh ); // Make sure that x and w are even if ( x & 1 ) { x --; w += 2; if ( w & 1 ) w --; } else if ( w & 1 ) { w ++; } ds = w * 2; ss = width * 2; // Now we need to create a new destination image dest = mlt_pool_alloc( w * h * 2 ); // Assign to the new frame mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL ); mlt_properties_set_int( b_props, "width", w ); mlt_properties_set_int( b_props, "height", h ); if ( y < 0 ) { dest += ( ds * -y ); h += y; y = 0; } if ( y + h > height ) h -= ( y + h - height ); if ( x < 0 ) { dest += -x * 2; w += x; x = 0; } // Copy the region of the image p = image + y * ss + x * 2; while ( h -- ) { inline_memcpy( dest, p, w * 2 ); dest += ds; p += ss; } // Assign this position to the b frame mlt_frame_set_position( b_frame, frame_position ); mlt_properties_set( b_props, "distort", "true" ); // Return the frame return b_frame; } /** Get the image. */ static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable ) { // Get the b frame from the stack mlt_frame b_frame = mlt_frame_pop_frame( a_frame ); // Get the transition from the a frame mlt_transition this = mlt_frame_pop_service( a_frame ); // This compositer is yuv422 only *format = mlt_image_yuv422; // Get the image from the a frame mlt_frame_get_image( a_frame, image, format, width, height, 1 ); // Get the properties from the transition mlt_properties properties = MLT_TRANSITION_PROPERTIES( this ); if ( b_frame != NULL ) { // Get the properties of the a frame mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame ); // Get the properties of the b frame mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame ); // Structures for geometry struct geometry_s result; // Calculate the position float position = mlt_properties_get_double( b_props, "relative_position" ); float delta = delta_calculate( this, a_frame ); // Get the image from the b frame uint8_t *image_b = NULL; int width_b = *width; int height_b = *height; // Do the calculation composite_calculate( this, &result, a_frame, position ); // Optimisation - no compositing required if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) ) return 0; // Need to keep the width/height of the a_frame on the b_frame for titling if ( mlt_properties_get( a_props, "dest_width" ) == NULL ) { mlt_properties_set_int( a_props, "dest_width", *width ); mlt_properties_set_int( a_props, "dest_height", *height ); mlt_properties_set_int( b_props, "dest_width", *width ); mlt_properties_set_int( b_props, "dest_height", *height ); } else { mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) ); mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) ); } // Since we are the consumer of the b_frame, we must pass along these // consumer properties from the a_frame mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) ); mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) ); mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) ); mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) ); // Special case for titling... if ( mlt_properties_get_int( properties, "titles" ) ) { if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL ) mlt_properties_set( b_props, "rescale.interp", "hyper" ); mlt_properties_set( properties, "fill", NULL ); width_b = mlt_properties_get_int( a_props, "dest_width" ); height_b = mlt_properties_get_int( a_props, "dest_height" ); } if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) { uint8_t *dest = *image; uint8_t *src = image_b; uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame ); int progressive = mlt_properties_get_int( a_props, "consumer_deinterlace" ) || mlt_properties_get_int( properties, "progressive" ); int field; int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 ); uint16_t *luma_bitmap = get_luma( properties, width_b, height_b ); //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL; composite_line_fn line_fn = NULL; for ( field = 0; field < ( progressive ? 1 : 2 ); field++ ) { // Assume lower field (0) first float field_position = position + field * delta; // Do the calculation if we need to composite_calculate( this, &result, a_frame, field_position ); if ( mlt_properties_get_int( properties, "titles" ) ) { result.nw = result.item.w = *width; result.nh = result.item.h = *height; result.sw = width_b; result.sh = height_b; } // Align alignment_calculate( &result ); // Composite the b_frame on the a_frame composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn ); } } } return 0; } /** Composition transition processing. */ static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame ) { // Get a unique name to store the frame position char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" ); // Assign the current position to the name mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_frame_get_position( a_frame ) ); // Propogate the transition properties to the b frame mlt_properties_set_double( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) ); mlt_frame_push_service( a_frame, this ); mlt_frame_push_frame( a_frame, b_frame ); mlt_frame_push_get_image( a_frame, transition_get_image ); return a_frame; } /** Constructor for the filter. */ mlt_transition transition_composite_init( char *arg ) { mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 ); if ( this != NULL && mlt_transition_init( this, NULL ) == 0 ) { mlt_properties properties = MLT_TRANSITION_PROPERTIES( this ); this->process = composite_process; // Default starting motion and zoom mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" ); // Default factory mlt_properties_set( properties, "factory", "fezzik" ); #ifdef USE_MMX //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() ); #endif } return this; }