Merge ../mlt
[melted] / src / modules / plus / transition_affine.c
1 /*
2 * transition_affine.c -- affine transformations
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Charles Yates <charles.yates@pandora.be>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include <framework/mlt_transition.h>
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 /** Calculate real geometry.
31 */
32
33 static void geometry_calculate( mlt_transition this, const char *store, struct mlt_geometry_item_s *output, float position )
34 {
35 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
36 mlt_geometry geometry = mlt_properties_get_data( properties, store, NULL );
37 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
38 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
39 int length = mlt_geometry_get_length( geometry );
40
41 // Allow wrapping
42 if ( !repeat_off && position >= length && length != 0 )
43 {
44 int section = position / length;
45 position -= section * length;
46 if ( !mirror_off && section % 2 == 1 )
47 position = length - position;
48 }
49
50 // Fetch the key for the position
51 mlt_geometry_fetch( geometry, output, position );
52 }
53
54
55 static mlt_geometry transition_parse_keys( mlt_transition this, const char *name, const char *store, int normalised_width, int normalised_height )
56 {
57 // Get the properties of the transition
58 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
59
60 // Try to fetch it first
61 mlt_geometry geometry = mlt_properties_get_data( properties, store, NULL );
62
63 // Get the in and out position
64 mlt_position in = mlt_transition_get_in( this );
65 mlt_position out = mlt_transition_get_out( this );
66
67 // Determine length and obtain cycle
68 int length = out - in + 1;
69 double cycle = mlt_properties_get_double( properties, "cycle" );
70
71 // Allow a geometry repeat cycle
72 if ( cycle >= 1 )
73 length = cycle;
74 else if ( cycle > 0 )
75 length *= cycle;
76
77 if ( geometry == NULL )
78 {
79 // Get the new style geometry string
80 char *property = mlt_properties_get( properties, name );
81
82 // Create an empty geometries object
83 geometry = mlt_geometry_init( );
84
85 // Parse the geometry if we have one
86 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
87
88 // Store it
89 mlt_properties_set_data( properties, store, geometry, 0, ( mlt_destructor )mlt_geometry_close, NULL );
90 }
91 else
92 {
93 // Check for updates and refresh if necessary
94 mlt_geometry_refresh( geometry, mlt_properties_get( properties, name ), length, normalised_width, normalised_height );
95 }
96
97 return geometry;
98 }
99
100 static mlt_geometry composite_calculate( mlt_transition this, struct mlt_geometry_item_s *result, int nw, int nh, float position )
101 {
102 // Structures for geometry
103 mlt_geometry start = transition_parse_keys( this, "geometry", "geometries", nw, nh );
104
105 // Do the calculation
106 geometry_calculate( this, "geometries", result, position );
107
108 return start;
109 }
110
111 static inline float composite_calculate_key( mlt_transition this, const char *name, const char *store, int norm, float position )
112 {
113 // Struct for the result
114 struct mlt_geometry_item_s result;
115
116 // Structures for geometry
117 transition_parse_keys( this, name, store, norm, 0 );
118
119 // Do the calculation
120 geometry_calculate( this, store, &result, position );
121
122 return result.x;
123 }
124
125 typedef struct
126 {
127 float matrix[3][3];
128 }
129 affine_t;
130
131 static void affine_init( float this[3][3] )
132 {
133 this[0][0] = 1;
134 this[0][1] = 0;
135 this[0][2] = 0;
136 this[1][0] = 0;
137 this[1][1] = 1;
138 this[1][2] = 0;
139 this[2][0] = 0;
140 this[2][1] = 0;
141 this[2][2] = 1;
142 }
143
144 // Multiply two this affine transform with that
145 static void affine_multiply( float this[3][3], float that[3][3] )
146 {
147 float output[3][3];
148 int i;
149 int j;
150
151 for ( i = 0; i < 3; i ++ )
152 for ( j = 0; j < 3; j ++ )
153 output[i][j] = this[i][0] * that[j][0] + this[i][1] * that[j][1] + this[i][2] * that[j][2];
154
155 this[0][0] = output[0][0];
156 this[0][1] = output[0][1];
157 this[0][2] = output[0][2];
158 this[1][0] = output[1][0];
159 this[1][1] = output[1][1];
160 this[1][2] = output[1][2];
161 this[2][0] = output[2][0];
162 this[2][1] = output[2][1];
163 this[2][2] = output[2][2];
164 }
165
166 // Rotate by a given angle
167 static void affine_rotate_x( float this[3][3], float angle )
168 {
169 float affine[3][3];
170 affine[0][0] = cos( angle * M_PI / 180 );
171 affine[0][1] = 0 - sin( angle * M_PI / 180 );
172 affine[0][2] = 0;
173 affine[1][0] = sin( angle * M_PI / 180 );
174 affine[1][1] = cos( angle * M_PI / 180 );
175 affine[1][2] = 0;
176 affine[2][0] = 0;
177 affine[2][1] = 0;
178 affine[2][2] = 1;
179 affine_multiply( this, affine );
180 }
181
182 static void affine_rotate_y( float this[3][3], float angle )
183 {
184 float affine[3][3];
185 affine[0][0] = cos( angle * M_PI / 180 );
186 affine[0][1] = 0;
187 affine[0][2] = 0 - sin( angle * M_PI / 180 );
188 affine[1][0] = 0;
189 affine[1][1] = 1;
190 affine[1][2] = 0;
191 affine[2][0] = sin( angle * M_PI / 180 );
192 affine[2][1] = 0;
193 affine[2][2] = cos( angle * M_PI / 180 );
194 affine_multiply( this, affine );
195 }
196
197 static void affine_rotate_z( float this[3][3], float angle )
198 {
199 float affine[3][3];
200 affine[0][0] = 1;
201 affine[0][1] = 0;
202 affine[0][2] = 0;
203 affine[1][0] = 0;
204 affine[1][1] = cos( angle * M_PI / 180 );
205 affine[1][2] = sin( angle * M_PI / 180 );
206 affine[2][0] = 0;
207 affine[2][1] = - sin( angle * M_PI / 180 );
208 affine[2][2] = cos( angle * M_PI / 180 );
209 affine_multiply( this, affine );
210 }
211
212 static void affine_scale( float this[3][3], float sx, float sy )
213 {
214 float affine[3][3];
215 affine[0][0] = sx;
216 affine[0][1] = 0;
217 affine[0][2] = 0;
218 affine[1][0] = 0;
219 affine[1][1] = sy;
220 affine[1][2] = 0;
221 affine[2][0] = 0;
222 affine[2][1] = 0;
223 affine[2][2] = 1;
224 affine_multiply( this, affine );
225 }
226
227 // Shear by a given value
228 static void affine_shear( float this[3][3], float shear_x, float shear_y, float shear_z )
229 {
230 float affine[3][3];
231 affine[0][0] = 1;
232 affine[0][1] = tan( shear_x * M_PI / 180 );
233 affine[0][2] = 0;
234 affine[1][0] = tan( shear_y * M_PI / 180 );
235 affine[1][1] = 1;
236 affine[1][2] = tan( shear_z * M_PI / 180 );
237 affine[2][0] = 0;
238 affine[2][1] = 0;
239 affine[2][2] = 1;
240 affine_multiply( this, affine );
241 }
242
243 static void affine_offset( float this[3][3], int x, int y )
244 {
245 this[0][2] += x;
246 this[1][2] += y;
247 }
248
249 // Obtain the mapped x coordinate of the input
250 static inline double MapX( float this[3][3], int x, int y )
251 {
252 return this[0][0] * x + this[0][1] * y + this[0][2];
253 }
254
255 // Obtain the mapped y coordinate of the input
256 static inline double MapY( float this[3][3], int x, int y )
257 {
258 return this[1][0] * x + this[1][1] * y + this[1][2];
259 }
260
261 static inline double MapZ( float this[3][3], int x, int y )
262 {
263 return this[2][0] * x + this[2][1] * y + this[2][2];
264 }
265
266 #define MAX( x, y ) x > y ? x : y
267 #define MIN( x, y ) x < y ? x : y
268
269 static void affine_max_output( float this[3][3], float *w, float *h, float dz )
270 {
271 int tlx = MapX( this, -720, 576 ) / dz;
272 int tly = MapY( this, -720, 576 ) / dz;
273 int trx = MapX( this, 720, 576 ) / dz;
274 int try = MapY( this, 720, 576 ) / dz;
275 int blx = MapX( this, -720, -576 ) / dz;
276 int bly = MapY( this, -720, -576 ) / dz;
277 int brx = MapX( this, 720, -576 ) / dz;
278 int bry = MapY( this, 720, -576 ) / dz;
279
280 int max_x;
281 int max_y;
282 int min_x;
283 int min_y;
284
285 max_x = MAX( tlx, trx );
286 max_x = MAX( max_x, blx );
287 max_x = MAX( max_x, brx );
288
289 min_x = MIN( tlx, trx );
290 min_x = MIN( min_x, blx );
291 min_x = MIN( min_x, brx );
292
293 max_y = MAX( tly, try );
294 max_y = MAX( max_y, bly );
295 max_y = MAX( max_y, bry );
296
297 min_y = MIN( tly, try );
298 min_y = MIN( min_y, bly );
299 min_y = MIN( min_y, bry );
300
301 *w = ( float )( max_x - min_x + 1 ) / 1440.0;
302 *h = ( float )( max_y - min_y + 1 ) / 1152.0;
303 }
304
305 #define IN_RANGE( v, r ) ( v >= - r / 2 && v < r / 2 )
306
307 static inline void get_affine( affine_t *affine, mlt_transition this, float position )
308 {
309 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
310 int keyed = mlt_properties_get_int( properties, "keyed" );
311 affine_init( affine->matrix );
312
313 if ( keyed == 0 )
314 {
315 float fix_rotate_x = mlt_properties_get_double( properties, "fix_rotate_x" );
316 float fix_rotate_y = mlt_properties_get_double( properties, "fix_rotate_y" );
317 float fix_rotate_z = mlt_properties_get_double( properties, "fix_rotate_z" );
318 float rotate_x = mlt_properties_get_double( properties, "rotate_x" );
319 float rotate_y = mlt_properties_get_double( properties, "rotate_y" );
320 float rotate_z = mlt_properties_get_double( properties, "rotate_z" );
321 float fix_shear_x = mlt_properties_get_double( properties, "fix_shear_x" );
322 float fix_shear_y = mlt_properties_get_double( properties, "fix_shear_y" );
323 float fix_shear_z = mlt_properties_get_double( properties, "fix_shear_z" );
324 float shear_x = mlt_properties_get_double( properties, "shear_x" );
325 float shear_y = mlt_properties_get_double( properties, "shear_y" );
326 float shear_z = mlt_properties_get_double( properties, "shear_z" );
327 float ox = mlt_properties_get_double( properties, "ox" );
328 float oy = mlt_properties_get_double( properties, "oy" );
329
330 affine_rotate_x( affine->matrix, fix_rotate_x + rotate_x * position );
331 affine_rotate_y( affine->matrix, fix_rotate_y + rotate_y * position );
332 affine_rotate_z( affine->matrix, fix_rotate_z + rotate_z * position );
333 affine_shear( affine->matrix,
334 fix_shear_x + shear_x * position,
335 fix_shear_y + shear_y * position,
336 fix_shear_z + shear_z * position );
337 affine_offset( affine->matrix, ox, oy );
338 }
339 else
340 {
341 float rotate_x = composite_calculate_key( this, "rotate_x", "rotate_x_info", 360, position );
342 float rotate_y = composite_calculate_key( this, "rotate_y", "rotate_y_info", 360, position );
343 float rotate_z = composite_calculate_key( this, "rotate_z", "rotate_z_info", 360, position );
344 float shear_x = composite_calculate_key( this, "shear_x", "shear_x_info", 360, position );
345 float shear_y = composite_calculate_key( this, "shear_y", "shear_y_info", 360, position );
346 float shear_z = composite_calculate_key( this, "shear_z", "shear_z_info", 360, position );
347
348 affine_rotate_x( affine->matrix, rotate_x );
349 affine_rotate_y( affine->matrix, rotate_y );
350 affine_rotate_z( affine->matrix, rotate_z );
351 affine_shear( affine->matrix, shear_x, shear_y, shear_z );
352 }
353 }
354
355 /** Get the image.
356 */
357
358 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
359 {
360 // Get the b frame from the stack
361 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
362
363 // Get the transition object
364 mlt_transition this = mlt_frame_pop_service( a_frame );
365
366 // Get the properties of the transition
367 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
368
369 // Get the properties of the a frame
370 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
371
372 // Get the properties of the b frame
373 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
374
375 // Image, format, width, height and image for the b frame
376 uint8_t *b_image = NULL;
377 mlt_image_format b_format = mlt_image_yuv422;
378 int b_width;
379 int b_height;
380
381 // Get the unique name to retrieve the frame position
382 char *name = mlt_properties_get( properties, "_unique_id" );
383
384 // Assign the current position to the name
385 mlt_position position = mlt_properties_get_position( a_props, name );
386 mlt_position in = mlt_properties_get_position( properties, "in" );
387 mlt_position out = mlt_properties_get_position( properties, "out" );
388 int mirror = mlt_properties_get_position( properties, "mirror" );
389 int length = out - in + 1;
390
391 // Obtain the normalised width and height from the a_frame
392 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
393 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
394
395 double consumer_ar = mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) ;
396
397 // Structures for geometry
398 struct mlt_geometry_item_s result;
399
400 if ( mirror && position > length / 2 )
401 position = abs( position - length );
402
403 // Fetch the a frame image
404 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
405
406 // Calculate the region now
407 composite_calculate( this, &result, normalised_width, normalised_height, ( float )position );
408
409 // Fetch the b frame image
410 result.w = ( int )( result.w * *width / normalised_width );
411 result.h = ( int )( result.h * *height / normalised_height );
412 result.x = ( int )( result.x * *width / normalised_width );
413 result.y = ( int )( result.y * *height / normalised_height );
414 //result.w -= ( int )abs( result.w ) % 2;
415 //result.x -= ( int )abs( result.x ) % 2;
416 b_width = result.w;
417 b_height = result.h;
418
419 if ( mlt_properties_get_double( b_props, "aspect_ratio" ) == 0.0 )
420 mlt_properties_set_double( b_props, "aspect_ratio", consumer_ar );
421
422 if ( !strcmp( mlt_properties_get( a_props, "rescale.interp" ), "none" ) )
423 {
424 mlt_properties_set( b_props, "rescale.interp", "nearest" );
425 mlt_properties_set_double( b_props, "consumer_aspect_ratio", consumer_ar );
426 }
427 else
428 {
429 mlt_properties_set( b_props, "rescale.interp", mlt_properties_get( a_props, "rescale.interp" ) );
430 mlt_properties_set_double( b_props, "consumer_aspect_ratio", consumer_ar );
431 }
432
433 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
434 mlt_frame_get_image( b_frame, &b_image, &b_format, &b_width, &b_height, 0 );
435 result.w = b_width;
436 result.h = b_height;
437
438 // Check that both images are of the correct format and process
439 if ( *format == mlt_image_yuv422 && b_format == mlt_image_yuv422 )
440 {
441 register int x, y;
442 register int dx, dy;
443 double dz;
444 float sw, sh;
445
446 // Get values from the transition
447 float scale_x = mlt_properties_get_double( properties, "scale_x" );
448 float scale_y = mlt_properties_get_double( properties, "scale_y" );
449 int scale = mlt_properties_get_int( properties, "scale" );
450
451 uint8_t *p = *image;
452 uint8_t *q = *image;
453
454 int cx = result.x + ( b_width >> 1 );
455 int cy = result.y + ( b_height >> 1 );
456 cx -= cx % 2;
457
458 int lower_x = 0 - cx;
459 int upper_x = *width - cx;
460 int lower_y = 0 - cy;
461 int upper_y = *height - cy;
462
463 int b_stride = b_width << 1;
464 int a_stride = *width << 1;
465 int x_offset = ( int )result.w >> 1;
466 int y_offset = ( int )result.h >> 1;
467
468 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
469 uint8_t *mask = mlt_frame_get_alpha_mask( a_frame );
470 uint8_t *pmask = mask;
471 float mix;
472
473 affine_t affine;
474
475 get_affine( &affine, this, ( float )position );
476
477 q = *image;
478
479 dz = MapZ( affine.matrix, 0, 0 );
480
481 if ( mask == NULL )
482 {
483 mask = mlt_pool_alloc( *width * *height );
484 pmask = mask;
485 memset( mask, 255, *width * *height );
486 }
487
488 if ( ( int )abs( dz * 1000 ) < 25 )
489 goto getout;
490
491 if ( scale )
492 {
493 affine_max_output( affine.matrix, &sw, &sh, dz );
494 affine_scale( affine.matrix, sw, sh );
495 }
496 else if ( scale_x != 0 && scale_y != 0 )
497 {
498 affine_scale( affine.matrix, scale_x, scale_y );
499 }
500
501 if ( alpha == NULL )
502 {
503 for ( y = lower_y; y < upper_y; y ++ )
504 {
505 p = q;
506
507 for ( x = lower_x; x < upper_x; x ++ )
508 {
509 dx = MapX( affine.matrix, x, y ) / dz + x_offset;
510 dy = MapY( affine.matrix, x, y ) / dz + y_offset;
511
512 if ( dx >= 0 && dx < b_width && dy >=0 && dy < b_height )
513 {
514 pmask ++;
515 dx -= dx & 1;
516 *p ++ = *( b_image + dy * b_stride + ( dx << 1 ) );
517 *p ++ = *( b_image + dy * b_stride + ( dx << 1 ) + ( ( x & 1 ) << 1 ) + 1 );
518 }
519 else
520 {
521 p += 2;
522 pmask ++;
523 }
524 }
525
526 q += a_stride;
527 }
528 }
529 else
530 {
531 for ( y = lower_y; y < upper_y; y ++ )
532 {
533 p = q;
534
535 for ( x = lower_x; x < upper_x; x ++ )
536 {
537 dx = MapX( affine.matrix, x, y ) / dz + x_offset;
538 dy = MapY( affine.matrix, x, y ) / dz + y_offset;
539
540 if ( dx >= 0 && dx < b_width && dy >=0 && dy < b_height )
541 {
542 *pmask ++ = *( alpha + dy * b_width + dx );
543 mix = ( float )*( alpha + dy * b_width + dx ) / 255.0;
544 dx -= dx & 1;
545 *p = *p * ( 1 - mix ) + mix * *( b_image + dy * b_stride + ( dx << 1 ) );
546 p ++;
547 *p = *p * ( 1 - mix ) + mix * *( b_image + dy * b_stride + ( dx << 1 ) + ( ( x & 1 ) << 1 ) + 1 );
548 p ++;
549 }
550 else
551 {
552 p += 2;
553 pmask ++;
554 }
555 }
556
557 q += a_stride;
558 }
559 }
560
561 getout:
562 a_frame->get_alpha_mask = NULL;
563 mlt_properties_set_data( a_props, "alpha", mask, 0, mlt_pool_release, NULL );
564 }
565
566 return 0;
567 }
568
569 /** Affine transition processing.
570 */
571
572 static mlt_frame transition_process( mlt_transition transition, mlt_frame a_frame, mlt_frame b_frame )
573 {
574 // Get a unique name to store the frame position
575 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( transition ), "_unique_id" );
576
577 // Assign the current position to the name
578 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
579 mlt_properties_set_position( a_props, name, mlt_frame_get_position( a_frame ) );
580
581 // Push the transition on to the frame
582 mlt_frame_push_service( a_frame, transition );
583
584 // Push the b_frame on to the stack
585 mlt_frame_push_frame( a_frame, b_frame );
586
587 // Push the transition method
588 mlt_frame_push_get_image( a_frame, transition_get_image );
589
590 return a_frame;
591 }
592
593 /** Constructor for the filter.
594 */
595
596 mlt_transition transition_affine_init( mlt_profile profile, mlt_service_type type, const char *id, char *arg )
597 {
598 mlt_transition transition = mlt_transition_new( );
599 if ( transition != NULL )
600 {
601 mlt_properties_set_int( MLT_TRANSITION_PROPERTIES( transition ), "sx", 1 );
602 mlt_properties_set_int( MLT_TRANSITION_PROPERTIES( transition ), "sy", 1 );
603 mlt_properties_set_int( MLT_TRANSITION_PROPERTIES( transition ), "distort", 0 );
604 mlt_properties_set( MLT_TRANSITION_PROPERTIES( transition ), "geometry", "0,0:100%x100%" );
605 // Inform apps and framework that this is a video only transition
606 mlt_properties_set_int( MLT_TRANSITION_PROPERTIES( transition ), "_transition_type", 1 );
607 transition->process = transition_process;
608 }
609 return transition;
610 }