Mutable watermark producer and small optimisation
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 int frame;
44 float position;
45 float mix;
46 int nw; // normalised width
47 int nh; // normalised height
48 int sw; // scaled width, not including consumer scale based upon w/nw
49 int sh; // scaled height, not including consumer scale based upon h/nh
50 float x;
51 float y;
52 float w;
53 float h;
54 int halign; // horizontal alignment: 0=left, 1=center, 2=right
55 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
56 int distort;
57 struct geometry_s *next;
58 };
59
60 /** Parse a value from a geometry string.
61 */
62
63 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
64 {
65 float value = defaults;
66
67 if ( *ptr != NULL && **ptr != '\0' )
68 {
69 char *end = NULL;
70 value = strtod( *ptr, &end );
71 if ( end != NULL )
72 {
73 if ( *end == '%' )
74 value = ( value / 100.0 ) * normalisation;
75 while ( *end == delim || *end == '%' )
76 end ++;
77 }
78 *ptr = end;
79 }
80
81 return value;
82 }
83
84 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
85 expressed as a percentage by appending a % after the value, otherwise values are
86 assumed to be relative to the normalised dimensions of the consumer.
87 */
88
89 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
90 {
91 // Assign normalised width and height
92 geometry->nw = nw;
93 geometry->nh = nh;
94
95 // Assign from defaults if available
96 if ( defaults != NULL )
97 {
98 geometry->x = defaults->x;
99 geometry->y = defaults->y;
100 geometry->w = geometry->sw = defaults->w;
101 geometry->h = geometry->sh = defaults->h;
102 geometry->distort = defaults->distort;
103 geometry->mix = defaults->mix;
104 defaults->next = geometry;
105 }
106 else
107 {
108 geometry->mix = 100;
109 }
110
111 // Parse the geomtry string
112 if ( property != NULL && strcmp( property, "" ) )
113 {
114 char *ptr = property;
115 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
116 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
117 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
118 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
119 if ( *ptr == '!' )
120 {
121 geometry->distort = 1;
122 ptr ++;
123 if ( *ptr == ':' )
124 ptr ++;
125 }
126 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
127 }
128 }
129
130 /** Calculate real geometry.
131 */
132
133 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
134 {
135 // Search in for position
136 struct geometry_s *out = in->next;
137
138 if ( position >= 1.0 )
139 {
140 int section = floor( position );
141 position -= section;
142 if ( section % 2 == 1 )
143 position = 1.0 - position;
144 }
145
146 while ( out->next != NULL )
147 {
148 if ( position >= in->position && position < out->position )
149 break;
150
151 in = out;
152 out = in->next;
153 }
154
155 position = ( position - in->position ) / ( out->position - in->position );
156
157 // Calculate this frames geometry
158 if ( in->frame != out->frame - 1 )
159 {
160 output->nw = in->nw;
161 output->nh = in->nh;
162 output->x = in->x + ( out->x - in->x ) * position;
163 output->y = in->y + ( out->y - in->y ) * position;
164 output->w = in->w + ( out->w - in->w ) * position;
165 output->h = in->h + ( out->h - in->h ) * position;
166 output->mix = in->mix + ( out->mix - in->mix ) * position;
167 output->distort = in->distort;
168 }
169 else
170 {
171 output->nw = out->nw;
172 output->nh = out->nh;
173 output->x = out->x;
174 output->y = out->y;
175 output->w = out->w;
176 output->h = out->h;
177 output->mix = out->mix;
178 output->distort = out->distort;
179 }
180
181 // DRD> These break on negative values. I do not think they are needed
182 // since yuv_composite takes care of YUYV group alignment
183 //output->x = ( int )floor( output->x ) & 0xfffffffe;
184 //output->w = ( int )floor( output->w ) & 0xfffffffe;
185 //output->sw &= 0xfffffffe;
186 }
187
188 void transition_destroy_keys( void *arg )
189 {
190 struct geometry_s *ptr = arg;
191 struct geometry_s *next = NULL;
192
193 while ( ptr != NULL )
194 {
195 next = ptr->next;
196 free( ptr );
197 ptr = next;
198 }
199 }
200
201 static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
202 {
203 // Loop variable for property interrogation
204 int i = 0;
205
206 // Get the properties of the transition
207 mlt_properties properties = mlt_transition_properties( this );
208
209 // Get the in and out position
210 mlt_position in = mlt_transition_get_in( this );
211 mlt_position out = mlt_transition_get_out( this );
212
213 // Create the start
214 struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
215
216 // Create the end (we always need two entries)
217 struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
218
219 // Pointer
220 struct geometry_s *ptr = start;
221
222 // Parse the start property
223 geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
224
225 // Parse the keys in between
226 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
227 {
228 // Get the name of the property
229 char *name = mlt_properties_get_name( properties, i );
230
231 // Check that it's valid
232 if ( !strncmp( name, "key[", 4 ) )
233 {
234 // Get the value of the property
235 char *value = mlt_properties_get_value( properties, i );
236
237 // Determine the frame number
238 int frame = atoi( name + 4 );
239
240 // Determine the position
241 float position = 0;
242
243 if ( frame >= 0 && frame < ( out - in ) )
244 position = ( float )frame / ( float )( out - in + 1 );
245 else if ( frame < 0 && - frame < ( out - in ) )
246 position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
247
248 // For now, we'll exclude all keys received out of order
249 if ( position > ptr->position )
250 {
251 // Create a new geometry
252 struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
253
254 // Parse and add to the list
255 geometry_parse( temp, ptr, value, normalised_width, normalised_height );
256
257 // Assign the position and frame
258 temp->frame = frame;
259 temp->position = position;
260
261 // Allow the next to be appended after this one
262 ptr = temp;
263 }
264 else
265 {
266 fprintf( stderr, "Key out of order - skipping %s\n", name );
267 }
268 }
269 }
270
271 // Parse the end
272 geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
273 if ( out > 0 )
274 end->position = ( float )( out - in ) / ( float )( out - in + 1 );
275 else
276 end->position = 1;
277
278 return start;
279 }
280
281 /** Parse the alignment properties into the geometry.
282 */
283
284 static int alignment_parse( char* align )
285 {
286 int ret = 0;
287
288 if ( align == NULL );
289 else if ( isdigit( align[ 0 ] ) )
290 ret = atoi( align );
291 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
292 ret = 1;
293 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
294 ret = 2;
295
296 return ret;
297 }
298
299 /** Adjust position according to scaled size and alignment properties.
300 */
301
302 static void alignment_calculate( struct geometry_s *geometry )
303 {
304 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2;
305 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2;
306 }
307
308 /** Calculate the position for this frame.
309 */
310
311 static float position_calculate( mlt_transition this, mlt_position position )
312 {
313 // Get the in and out position
314 mlt_position in = mlt_transition_get_in( this );
315 mlt_position out = mlt_transition_get_out( this );
316
317 // Now do the calcs
318 return ( float )( position - in ) / ( float )( out - in + 1 );
319 }
320
321 /** Calculate the field delta for this frame - position between two frames.
322 */
323
324 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
325 {
326 // Get the in and out position
327 mlt_position in = mlt_transition_get_in( this );
328 mlt_position out = mlt_transition_get_out( this );
329
330 // Get the position of the frame
331 char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" );
332 mlt_position position = mlt_properties_get_position( mlt_frame_properties( frame ), name );
333
334 // Now do the calcs
335 float x = ( float )( position - in ) / ( float )( out - in + 1 );
336 float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
337
338 return ( y - x ) / 2.0;
339 }
340
341 static int get_value( mlt_properties properties, char *preferred, char *fallback )
342 {
343 int value = mlt_properties_get_int( properties, preferred );
344 if ( value == 0 )
345 value = mlt_properties_get_int( properties, fallback );
346 return value;
347 }
348
349 /** A linear threshold determination function.
350 */
351
352 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
353 {
354 if ( a < edge1 )
355 return 0;
356
357 if ( a >= edge2 )
358 return 0x10000;
359
360 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
361 }
362
363 /** A smoother, non-linear threshold determination function.
364 */
365
366 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
367 {
368 if ( a < edge1 )
369 return 0;
370
371 if ( a >= edge2 )
372 return 0x10000;
373
374 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
375
376 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
377 }
378
379 /** Load the luma map from PGM stream.
380 */
381
382 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
383 {
384 uint8_t *data = NULL;
385 while (1)
386 {
387 char line[128];
388 char comment[128];
389 int i = 2;
390 int maxval;
391 int bpp;
392 uint16_t *p;
393
394 line[127] = '\0';
395
396 // get the magic code
397 if ( fgets( line, 127, f ) == NULL )
398 break;
399
400 // skip comments
401 while ( sscanf( line, " #%s", comment ) > 0 )
402 if ( fgets( line, 127, f ) == NULL )
403 break;
404
405 if ( line[0] != 'P' || line[1] != '5' )
406 break;
407
408 // skip white space and see if a new line must be fetched
409 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
410 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
411 break;
412
413 // skip comments
414 while ( sscanf( line, " #%s", comment ) > 0 )
415 if ( fgets( line, 127, f ) == NULL )
416 break;
417
418 // get the dimensions
419 if ( line[0] == 'P' )
420 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
421 else
422 i = sscanf( line, "%d %d %d", width, height, &maxval );
423
424 // get the height value, if not yet
425 if ( i < 2 )
426 {
427 if ( fgets( line, 127, f ) == NULL )
428 break;
429
430 // skip comments
431 while ( sscanf( line, " #%s", comment ) > 0 )
432 if ( fgets( line, 127, f ) == NULL )
433 break;
434
435 i = sscanf( line, "%d", height );
436 if ( i == 0 )
437 break;
438 else
439 i = 2;
440 }
441
442 // get the maximum gray value, if not yet
443 if ( i < 3 )
444 {
445 if ( fgets( line, 127, f ) == NULL )
446 break;
447
448 // skip comments
449 while ( sscanf( line, " #%s", comment ) > 0 )
450 if ( fgets( line, 127, f ) == NULL )
451 break;
452
453 i = sscanf( line, "%d", &maxval );
454 if ( i == 0 )
455 break;
456 }
457
458 // determine if this is one or two bytes per pixel
459 bpp = maxval > 255 ? 2 : 1;
460
461 // allocate temporary storage for the raw data
462 data = mlt_pool_alloc( *width * *height * bpp );
463 if ( data == NULL )
464 break;
465
466 // read the raw data
467 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
468 break;
469
470 // allocate the luma bitmap
471 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
472 if ( *map == NULL )
473 break;
474
475 // proces the raw data into the luma bitmap
476 for ( i = 0; i < *width * *height * bpp; i += bpp )
477 {
478 if ( bpp == 1 )
479 *p++ = data[ i ] << 8;
480 else
481 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
482 }
483
484 break;
485 }
486
487 if ( data != NULL )
488 mlt_pool_release( data );
489 }
490
491 /** Generate a luma map from any YUV image.
492 */
493
494 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
495 {
496 int i;
497
498 // allocate the luma bitmap
499 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
500 if ( *map == NULL )
501 return;
502
503 // proces the image data into the luma bitmap
504 for ( i = 0; i < width * height * 2; i += 2 )
505 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
506 }
507
508
509 /** Composite a source line over a destination line
510 */
511
512 static inline
513 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
514 {
515 register int j;
516 int a, mix;
517
518 for ( j = 0; j < width_src; j ++ )
519 {
520 a = ( alpha == NULL ) ? 255 : *alpha ++;
521 mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight );
522 mix = ( mix * ( a + 1 ) ) >> 8;
523 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
524 dest++;
525 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
526 dest++;
527 }
528 }
529
530 /** Composite function.
531 */
532
533 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
534 {
535 int ret = 0;
536 int i;
537 int x_src = 0, y_src = 0;
538 int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
539 int step = ( field > -1 ) ? 2 : 1;
540 int bpp = 2;
541 int stride_src = width_src * bpp;
542 int stride_dest = width_dest * bpp;
543
544 // Adjust to consumer scale
545 int x = geometry.x * width_dest / geometry.nw;
546 int y = geometry.y * height_dest / geometry.nh;
547
548 // Align x to a full YUYV group
549 x &= 0xfffffffe;
550 width_src &= 0xfffffffe;
551
552 // optimization points - no work to do
553 if ( width_src <= 0 || height_src <= 0 )
554 return ret;
555
556 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
557 return ret;
558
559 // crop overlay off the left edge of frame
560 if ( x < 0 )
561 {
562 x_src = -x;
563 width_src -= x_src;
564 x = 0;
565 }
566
567 // crop overlay beyond right edge of frame
568 if ( x + width_src > width_dest )
569 width_src = width_dest - x;
570
571 // crop overlay off the top edge of the frame
572 if ( y < 0 )
573 {
574 y_src = -y;
575 height_src -= y_src;
576 }
577
578 // crop overlay below bottom edge of frame
579 if ( y + height_src > height_dest )
580 height_src = height_dest - y;
581
582 // offset pointer into overlay buffer based on cropping
583 p_src += x_src * bpp + y_src * stride_src;
584
585 // offset pointer into frame buffer based upon positive coordinates only!
586 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
587
588 // offset pointer into alpha channel based upon cropping
589 if ( p_alpha )
590 p_alpha += x_src + y_src * stride_src / bpp;
591
592 // offset pointer into luma channel based upon cropping
593 if ( p_luma )
594 p_luma += x_src + y_src * stride_src / bpp;
595
596 // Assuming lower field first
597 // Special care is taken to make sure the b_frame is aligned to the correct field.
598 // field 0 = lower field and y should be odd (y is 0-based).
599 // field 1 = upper field and y should be even.
600 if ( ( field > -1 ) && ( y % 2 == field ) )
601 {
602 //fprintf( stderr, "field %d y %d\n", field, y );
603 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
604 p_dest += stride_dest;
605 else
606 p_dest -= stride_dest;
607 }
608
609 // On the second field, use the other lines from b_frame
610 if ( field == 1 )
611 {
612 p_src += stride_src;
613 if ( p_alpha )
614 p_alpha += stride_src / bpp;
615 height_src--;
616 }
617
618 stride_src *= step;
619 stride_dest *= step;
620 int alpha_stride = stride_src / bpp;
621
622 // now do the compositing only to cropped extents
623 if ( line_fn != NULL )
624 {
625 for ( i = 0; i < height_src; i += step )
626 {
627 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
628
629 p_src += stride_src;
630 p_dest += stride_dest;
631 if ( p_alpha )
632 p_alpha += alpha_stride;
633 if ( p_luma )
634 p_luma += alpha_stride;
635 }
636 }
637 else
638 {
639 for ( i = 0; i < height_src; i += step )
640 {
641 composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
642
643 p_src += stride_src;
644 p_dest += stride_dest;
645 if ( p_alpha )
646 p_alpha += alpha_stride;
647 if ( p_luma )
648 p_luma += alpha_stride;
649 }
650 }
651
652 return ret;
653 }
654
655
656 /** Scale 16bit greyscale luma map using nearest neighbor.
657 */
658
659 static inline void
660 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height )
661 {
662 register int i, j;
663 register int x_step = ( src_width << 16 ) / dest_width;
664 register int y_step = ( src_height << 16 ) / dest_height;
665 register int x, y = 0;
666
667 for ( i = 0; i < dest_height; i++ )
668 {
669 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
670 x = 0;
671
672 for ( j = 0; j < dest_width; j++ )
673 {
674 *dest_buf++ = src[ x >> 16 ];
675 x += x_step;
676 }
677 y += y_step;
678 }
679 }
680
681 static uint16_t* get_luma( mlt_properties properties, int width, int height )
682 {
683 // The cached luma map information
684 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
685 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
686 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
687
688 // If the filename property changed, reload the map
689 char *resource = mlt_properties_get( properties, "luma" );
690
691 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
692 {
693 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
694 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
695 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
696
697 // Load the original luma once
698 if ( orig_bitmap == NULL )
699 {
700 char *extension = extension = strrchr( resource, '.' );
701
702 // See if it is a PGM
703 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
704 {
705 // Open PGM
706 FILE *f = fopen( resource, "r" );
707 if ( f != NULL )
708 {
709 // Load from PGM
710 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
711 fclose( f );
712
713 // Remember the original size for subsequent scaling
714 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
715 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
716 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
717 }
718 }
719 else
720 {
721 // Get the factory producer service
722 char *factory = mlt_properties_get( properties, "factory" );
723
724 // Create the producer
725 mlt_producer producer = mlt_factory_producer( factory, resource );
726
727 // If we have one
728 if ( producer != NULL )
729 {
730 // Get the producer properties
731 mlt_properties producer_properties = mlt_producer_properties( producer );
732
733 // Ensure that we loop
734 mlt_properties_set( producer_properties, "eof", "loop" );
735
736 // Now pass all producer. properties on the transition down
737 mlt_properties_pass( producer_properties, properties, "luma." );
738
739 // We will get the alpha frame from the producer
740 mlt_frame luma_frame = NULL;
741
742 // Get the luma frame
743 if ( mlt_service_get_frame( mlt_producer_service( producer ), &luma_frame, 0 ) == 0 )
744 {
745 uint8_t *luma_image;
746 mlt_image_format luma_format = mlt_image_yuv422;
747
748 // Get image from the luma producer
749 mlt_properties_set( mlt_frame_properties( luma_frame ), "rescale.interp", "none" );
750 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
751
752 // Generate the luma map
753 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
754 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
755
756 // Remember the original size for subsequent scaling
757 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
758 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
759 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
760
761 // Cleanup the luma frame
762 mlt_frame_close( luma_frame );
763 }
764
765 // Cleanup the luma producer
766 mlt_producer_close( producer );
767 }
768 }
769 }
770 // Scale luma map
771 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
772 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height );
773
774 // Remember the scaled luma size to prevent unnecessary scaling
775 mlt_properties_set_int( properties, "_luma.width", width );
776 mlt_properties_set_int( properties, "_luma.height", height );
777 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
778 }
779 return luma_bitmap;
780 }
781
782 /** Get the properly sized image from b_frame.
783 */
784
785 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
786 {
787 int ret = 0;
788 mlt_image_format format = mlt_image_yuv422;
789
790 // Get the properties objects
791 mlt_properties b_props = mlt_frame_properties( b_frame );
792 mlt_properties properties = mlt_transition_properties( this );
793
794 if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 )
795 {
796 // Adjust b_frame pixel aspect
797 int normalised_width = geometry->w;
798 int normalised_height = geometry->h;
799 int real_width = get_value( b_props, "real_width", "width" );
800 int real_height = get_value( b_props, "real_height", "height" );
801 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
802 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
803 int scaled_width = input_ar / output_ar * real_width;
804 int scaled_height = real_height;
805
806 // Now ensure that our images fit in the normalised frame
807 if ( scaled_width > normalised_width )
808 {
809 scaled_height = scaled_height * normalised_width / scaled_width;
810 scaled_width = normalised_width;
811 }
812 if ( scaled_height > normalised_height )
813 {
814 scaled_width = scaled_width * normalised_height / scaled_height;
815 scaled_height = normalised_height;
816 }
817
818 // Now apply the fill
819 // TODO: Should combine fill/distort in one property
820 if ( mlt_properties_get( properties, "fill" ) != NULL )
821 {
822 scaled_width = ( geometry->w / scaled_width ) * scaled_width;
823 scaled_height = ( geometry->h / scaled_height ) * scaled_height;
824 }
825
826 // Save the new scaled dimensions
827 geometry->sw = scaled_width;
828 geometry->sh = scaled_height;
829 }
830 else
831 {
832 geometry->sw = geometry->w;
833 geometry->sh = geometry->h;
834 }
835
836 // We want to ensure that we bypass resize now...
837 mlt_properties_set( b_props, "distort", "true" );
838
839 // Take into consideration alignment for optimisation
840 alignment_calculate( geometry );
841
842 // Adjust to consumer scale
843 int x = geometry->x * *width / geometry->nw;
844 int y = geometry->y * *height / geometry->nh;
845 *width = geometry->sw * *width / geometry->nw;
846 *height = geometry->sh * *height / geometry->nh;
847
848 x &= 0xfffffffe;
849
850 // optimization points - no work to do
851 if ( *width < 1 || *height < 1 )
852 return 1;
853
854 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
855 return 1;
856
857 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
858
859 return ret;
860 }
861
862
863 static struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position )
864 {
865 // Get the properties from the transition
866 mlt_properties properties = mlt_transition_properties( this );
867
868 // Get the properties from the frame
869 mlt_properties a_props = mlt_frame_properties( a_frame );
870
871 // Structures for geometry
872 struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
873
874 // Now parse the geometries
875 if ( start == NULL || mlt_properties_get_int( properties, "refresh" ) )
876 {
877 // Obtain the normalised width and height from the a_frame
878 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
879 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
880
881 // Parse the transitions properties
882 start = transition_parse_keys( this, normalised_width, normalised_height );
883
884 // Assign to properties to ensure we get destroyed
885 mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
886 mlt_properties_set_int( properties, "refresh", 0 );
887 }
888
889 // Do the calculation
890 geometry_calculate( result, start, position );
891
892 // Now parse the alignment
893 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
894 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
895
896 return start;
897 }
898
899 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
900 {
901 uint8_t *end = src + length;
902 while ( src < end )
903 {
904 *dest ++ = *src ++;
905 *dest ++ = *src ++;
906 }
907 }
908
909 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
910 {
911 // Create a frame to return
912 mlt_frame b_frame = mlt_frame_init( );
913
914 // Get the properties of the a frame
915 mlt_properties a_props = mlt_frame_properties( a_frame );
916
917 // Get the properties of the b frame
918 mlt_properties b_props = mlt_frame_properties( b_frame );
919
920 // Get the position
921 float position = position_calculate( this, frame_position );
922
923 // Destination image
924 uint8_t *dest = NULL;
925
926 // Get the image and dimensions
927 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
928 int width = mlt_properties_get_int( a_props, "width" );
929 int height = mlt_properties_get_int( a_props, "height" );
930
931 // Pointers for copy operation
932 uint8_t *p;
933 uint8_t *q;
934 uint8_t *r;
935
936 // Corrdinates
937 int w = 0;
938 int h = 0;
939 int x = 0;
940 int y = 0;
941
942 // Will need to know region to copy
943 struct geometry_s result;
944
945 // Calculate the region now
946 composite_calculate( &result, this, a_frame, position );
947
948 // Need to scale down to actual dimensions
949 x = result.x * width / result.nw ;
950 y = result.y * height / result.nh;
951 w = result.w * width / result.nw;
952 h = result.h * height / result.nh;
953
954 if ( y < 0 )
955 {
956 h = h + y;
957 y = 0;
958 }
959
960 if ( y + h > height )
961 h = height - y;
962
963 x &= 0xfffffffe;
964 w &= 0xfffffffe;
965
966 // Now we need to create a new destination image
967 dest = mlt_pool_alloc( w * h * 2 );
968
969 // Copy the region of the image
970 p = image + y * width * 2 + x * 2;
971 q = dest;
972 r = dest + w * h * 2;
973
974 while ( q < r )
975 {
976 inline_memcpy( q, p, w * 2 );
977 q += w * 2;
978 p += width * 2;
979 }
980
981 // Assign to the new frame
982 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
983 mlt_properties_set_int( b_props, "width", w );
984 mlt_properties_set_int( b_props, "height", h );
985
986 // Assign this position to the b frame
987 mlt_frame_set_position( b_frame, frame_position );
988
989 // Return the frame
990 return b_frame;
991 }
992
993 /** Get the image.
994 */
995
996 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
997 {
998 // Get the b frame from the stack
999 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1000
1001 // Get the transition from the a frame
1002 mlt_transition this = mlt_frame_pop_service( a_frame );
1003
1004 // This compositer is yuv422 only
1005 *format = mlt_image_yuv422;
1006
1007 // Get the image from the a frame
1008 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1009
1010 // Get the properties from the transition
1011 mlt_properties properties = mlt_transition_properties( this );
1012
1013 if ( b_frame != NULL )
1014 {
1015 // Get the properties of the a frame
1016 mlt_properties a_props = mlt_frame_properties( a_frame );
1017
1018 // Get the properties of the b frame
1019 mlt_properties b_props = mlt_frame_properties( b_frame );
1020
1021 // Structures for geometry
1022 struct geometry_s result;
1023
1024 // Calculate the position
1025 float position = mlt_properties_get_double( b_props, "relative_position" );
1026 float delta = delta_calculate( this, a_frame );
1027
1028 // Do the calculation
1029 struct geometry_s *start = composite_calculate( &result, this, a_frame, position );
1030
1031 // Optimisation - no compositing required
1032 if ( result.mix == 0 || ( result.w == 0 && result.h == 0 ) )
1033 return 0;
1034
1035 // Since we are the consumer of the b_frame, we must pass along these
1036 // consumer properties from the a_frame
1037 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1038
1039 // Get the image from the b frame
1040 uint8_t *image_b = NULL;
1041 int width_b = *width;
1042 int height_b = *height;
1043
1044 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
1045 {
1046 uint8_t *dest = *image;
1047 uint8_t *src = image_b;
1048 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
1049 int progressive =
1050 mlt_properties_get_int( a_props, "consumer_progressive" ) ||
1051 mlt_properties_get_int( properties, "progressive" );
1052 int field;
1053
1054 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1055 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1056 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
1057 composite_line_fn line_fn = NULL;
1058
1059 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1060 {
1061 // Assume lower field (0) first
1062 float field_position = position + field * delta;
1063
1064 // Do the calculation if we need to
1065 geometry_calculate( &result, start, field_position );
1066
1067 // Align
1068 alignment_calculate( &result );
1069
1070 // Composite the b_frame on the a_frame
1071 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1072 }
1073 }
1074 }
1075
1076 return 0;
1077 }
1078
1079 /** Composition transition processing.
1080 */
1081
1082 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1083 {
1084 // Get a unique name to store the frame position
1085 char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" );
1086
1087 // Assign the current position to the name
1088 mlt_properties_set_position( mlt_frame_properties( a_frame ), name, mlt_frame_get_position( a_frame ) );
1089
1090 // Propogate the transition properties to the b frame
1091 mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1092
1093 mlt_frame_push_service( a_frame, this );
1094 mlt_frame_push_frame( a_frame, b_frame );
1095 mlt_frame_push_get_image( a_frame, transition_get_image );
1096 return a_frame;
1097 }
1098
1099 /** Constructor for the filter.
1100 */
1101
1102 mlt_transition transition_composite_init( char *arg )
1103 {
1104 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1105 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1106 {
1107 mlt_properties properties = mlt_transition_properties( this );
1108
1109 this->process = composite_process;
1110
1111 // Default starting motion and zoom
1112 mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" );
1113
1114 // Default factory
1115 mlt_properties_set( properties, "factory", "fezzik" );
1116
1117 #ifdef USE_MMX
1118 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1119 #endif
1120 }
1121 return this;
1122 }