Filter optimisations and cleanup part 1
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt_frame.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27
28 /** Geometry struct.
29 */
30
31 struct geometry_s
32 {
33 int nw; // normalised width
34 int nh; // normalised height
35 int sw; // scaled width, not including consumer scale based upon w/nw
36 int sh; // scaled height, not including consumer scale based upon h/nh
37 float x;
38 float y;
39 float w;
40 float h;
41 float mix;
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44 };
45
46 /** Parse a value from a geometry string.
47 */
48
49 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
50 {
51 float value = defaults;
52
53 if ( *ptr != NULL && **ptr != '\0' )
54 {
55 char *end = NULL;
56 value = strtod( *ptr, &end );
57 if ( end != NULL )
58 {
59 if ( *end == '%' )
60 value = ( value / 100.0 ) * normalisation;
61 while ( *end == delim || *end == '%' )
62 end ++;
63 }
64 *ptr = end;
65 }
66
67 return value;
68 }
69
70 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
71 expressed as a percentage by appending a % after the value, otherwise values are
72 assumed to be relative to the normalised dimensions of the consumer.
73 */
74
75 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
76 {
77 // Assign normalised width and height
78 geometry->nw = nw;
79 geometry->nh = nh;
80
81 // Assign from defaults if available
82 if ( defaults != NULL )
83 {
84 geometry->x = defaults->x;
85 geometry->y = defaults->y;
86 geometry->w = geometry->sw = defaults->w;
87 geometry->h = geometry->sh = defaults->h;
88 geometry->mix = defaults->mix;
89 }
90 else
91 {
92 geometry->mix = 100;
93 }
94
95 // Parse the geomtry string
96 if ( property != NULL )
97 {
98 char *ptr = property;
99 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
100 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
101 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
102 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
103 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
104 }
105 }
106
107 /** Calculate real geometry.
108 */
109
110 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, struct geometry_s *out, float position )
111 {
112 // Calculate this frames geometry
113 output->nw = in->nw;
114 output->nh = in->nh;
115 output->x = in->x + ( out->x - in->x ) * position + 0.5;
116 output->y = in->y + ( out->y - in->y ) * position + 0.5;
117 output->w = in->w + ( out->w - in->w ) * position;
118 output->h = in->h + ( out->h - in->h ) * position;
119 output->mix = in->mix + ( out->mix - in->mix ) * position;
120 }
121
122 /** Parse the alignment properties into the geometry.
123 */
124
125 static int alignment_parse( char* align )
126 {
127 int ret = 0;
128
129 if ( align == NULL );
130 else if ( isdigit( align[ 0 ] ) )
131 ret = atoi( align );
132 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
133 ret = 1;
134 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
135 ret = 2;
136
137 return ret;
138 }
139
140 /** Adjust position according to scaled size and alignment properties.
141 */
142
143 static void alignment_calculate( struct geometry_s *geometry )
144 {
145 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5;
146 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5;
147 }
148
149 /** Calculate the position for this frame.
150 */
151
152 static float position_calculate( mlt_transition this, mlt_frame frame )
153 {
154 // Get the in and out position
155 mlt_position in = mlt_transition_get_in( this );
156 mlt_position out = mlt_transition_get_out( this );
157
158 // Get the position of the frame
159 mlt_position position = mlt_frame_get_position( frame );
160
161 // Now do the calcs
162 return ( float )( position - in ) / ( float )( out - in + 1 );
163 }
164
165 /** Calculate the field delta for this frame - position between two frames.
166 */
167
168 static float delta_calculate( mlt_transition this, mlt_frame frame )
169 {
170 // Get the in and out position
171 mlt_position in = mlt_transition_get_in( this );
172 mlt_position out = mlt_transition_get_out( this );
173
174 // Get the position of the frame
175 mlt_position position = mlt_frame_get_position( frame );
176
177 // Now do the calcs
178 float x = ( float )( position - in ) / ( float )( out - in + 1 );
179 position++;
180 float y = ( float )( position - in ) / ( float )( out - in + 1 );
181
182 return ( y - x ) / 2.0;
183 }
184
185 static int get_value( mlt_properties properties, char *preferred, char *fallback )
186 {
187 int value = mlt_properties_get_int( properties, preferred );
188 if ( value == 0 )
189 value = mlt_properties_get_int( properties, fallback );
190 return value;
191 }
192
193 /** Composite function.
194 */
195
196 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field )
197 {
198 int ret = 0;
199 int i, j, k;
200 int x_src = 0, y_src = 0;
201 float weight = geometry.mix / 100;
202 int stride_src = width_src * bpp;
203 int stride_dest = width_dest * bpp;
204
205 // Adjust to consumer scale
206 int x = geometry.x * width_dest / geometry.nw + 0.5;
207 int y = geometry.y * height_dest / geometry.nh + 0.5;
208
209 if ( bpp == 2 )
210 x -= x % 2;
211
212 // optimization points - no work to do
213 if ( width_src <= 0 || height_src <= 0 )
214 return ret;
215
216 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
217 return ret;
218
219 // crop overlay off the left edge of frame
220 if ( x < 0 )
221 {
222 x_src = -x;
223 width_src -= x_src;
224 x = 0;
225 }
226
227 // crop overlay beyond right edge of frame
228 else if ( x + width_src > width_dest )
229 width_src = width_dest - x;
230
231 // crop overlay off the top edge of the frame
232 if ( y < 0 )
233 {
234 y_src = -y;
235 height_src -= y_src;
236 }
237 // crop overlay below bottom edge of frame
238 else if ( y + height_src > height_dest )
239 height_src = height_dest - y;
240
241 // offset pointer into overlay buffer based on cropping
242 p_src += x_src * bpp + y_src * stride_src;
243
244 // offset pointer into frame buffer based upon positive coordinates only!
245 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
246
247 // offset pointer into alpha channel based upon cropping
248 if ( p_alpha )
249 p_alpha += x_src + y_src * stride_src / bpp;
250
251 // Assuming lower field first
252 // Special care is taken to make sure the b_frame is aligned to the correct field.
253 // field 0 = lower field and y should be odd (y is 0-based).
254 // field 1 = upper field and y should be even.
255 if ( ( field > -1 ) && ( y % 2 == field ) )
256 {
257 if ( y == 0 )
258 p_dest += stride_dest;
259 else
260 p_dest -= stride_dest;
261 }
262
263 // On the second field, use the other lines from b_frame
264 if ( field == 1 )
265 {
266 p_src += stride_src;
267 if ( p_alpha )
268 p_alpha += stride_src / bpp;
269 height_src--;
270 }
271
272 uint8_t *p = p_src;
273 uint8_t *q = p_dest;
274 uint8_t *o = p_dest;
275 uint8_t *z = p_alpha;
276
277 uint8_t a;
278 float value;
279 int step = ( field > -1 ) ? 2 : 1;
280
281 // now do the compositing only to cropped extents
282 for ( i = 0; i < height_src; i += step )
283 {
284 p = &p_src[ i * stride_src ];
285 q = &p_dest[ i * stride_dest ];
286 o = &p_dest[ i * stride_dest ];
287 if ( p_alpha )
288 z = &p_alpha[ i * stride_src / bpp ];
289
290 for ( j = 0; j < width_src; j ++ )
291 {
292 a = ( z == NULL ) ? 255 : *z ++;
293 value = ( weight * ( float ) a / 255.0 );
294 for ( k = 0; k < bpp; k ++ )
295 *o ++ = (uint8_t)( *p++ * value + *q++ * ( 1 - value ) );
296 }
297 }
298
299 return ret;
300 }
301
302
303 /** Get the properly sized image from b_frame.
304 */
305
306 static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
307 {
308 int ret = 0;
309 mlt_image_format format = mlt_image_yuv422;
310
311 // Initialise the scaled dimensions from the computed
312 geometry->sw = geometry->w;
313 geometry->sh = geometry->h;
314
315 // Compute the dimensioning rectangle
316 mlt_properties b_props = mlt_frame_properties( b_frame );
317 mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
318 mlt_properties properties = mlt_transition_properties( this );
319
320 if ( mlt_properties_get( properties, "distort" ) == NULL )
321 {
322 // Adjust b_frame pixel aspect
323 int normalised_width = geometry->w;
324 int normalised_height = geometry->h;
325 int real_width = get_value( b_props, "real_width", "width" );
326 int real_height = get_value( b_props, "real_height", "height" );
327 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
328 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
329 //int scaled_width = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_width;
330 //int scaled_height = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_height;
331 int scaled_width = real_width;
332 int scaled_height = real_height;
333 double output_sar = ( double ) geometry->nw / geometry->nh / output_ar;
334
335 // We always normalise pixel aspect by requesting a larger than normal
336 // image in order to maximise usage of the bounding rectangle
337
338 // These calcs are optimised by reducing factors in equations
339 if ( output_sar < 1.0 )
340 // If the output is skinny pixels (PAL) then stretch our input vertically
341 // derived from: input_sar / output_sar * real_height
342 scaled_height = ( double )real_width / input_ar / output_sar;
343
344 else
345 // If the output is fat pixels (NTSC) then stretch our input horizontally
346 // derived from: output_sar / input_sar * real_width
347 scaled_width = output_sar * real_height * input_ar;
348
349 // fprintf( stderr, "composite: real %dx%d scaled %dx%d normalised %dx%d\n", real_width, real_height, scaled_width, scaled_height, normalised_width, normalised_height );
350
351 // Now ensure that our images fit in the normalised frame
352 if ( scaled_width > normalised_width )
353 {
354 scaled_height = scaled_height * normalised_width / scaled_width;
355 scaled_width = normalised_width;
356 }
357 if ( scaled_height > normalised_height )
358 {
359 scaled_width = scaled_width * normalised_height / scaled_height;
360 scaled_height = normalised_height;
361 }
362
363 // Now we need to align to the geometry
364 if ( scaled_width <= geometry->w && scaled_height <= geometry->h )
365 {
366 // Save the new scaled dimensions
367 geometry->sw = scaled_width;
368 geometry->sh = scaled_height;
369 }
370 }
371
372 // We want to ensure that we bypass resize now...
373 mlt_properties_set( b_props, "distort", "true" );
374
375 // Take into consideration alignment for optimisation
376 alignment_calculate( geometry );
377
378 // Adjust to consumer scale
379 int x = geometry->x * *width / geometry->nw + 0.5;
380 int y = geometry->y * *height / geometry->nh + 0.5;
381 *width = geometry->sw * *width / geometry->nw;
382 *height = geometry->sh * *height / geometry->nh;
383
384 x -= x % 2;
385
386 //fprintf( stderr, "composite calculated %d,%d:%dx%d\n", x, y, *width, *height );
387
388 // optimization points - no work to do
389 if ( *width <= 0 || *height <= 0 )
390 return 1;
391
392 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
393 return 1;
394
395 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 /* writable */ );
396
397 return ret;
398 }
399
400
401 static uint8_t *transition_get_alpha_mask( mlt_frame this )
402 {
403 // Obtain properties of frame
404 mlt_properties properties = mlt_frame_properties( this );
405
406 // Return the alpha mask
407 return mlt_properties_get_data( properties, "alpha", NULL );
408 }
409
410 /** Get the image.
411 */
412
413 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
414 {
415 // Get the b frame from the stack
416 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
417
418 // This compositer is yuv422 only
419 *format = mlt_image_yuv422;
420
421 // Get the image from the a frame
422 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
423
424 if ( b_frame != NULL )
425 {
426 // Get the properties of the a frame
427 mlt_properties a_props = mlt_frame_properties( a_frame );
428
429 // Get the properties of the b frame
430 mlt_properties b_props = mlt_frame_properties( b_frame );
431
432 // Get the transition from the b frame
433 mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
434
435 // Get the properties from the transition
436 mlt_properties properties = mlt_transition_properties( this );
437
438 // Structures for geometry
439 struct geometry_s result;
440 struct geometry_s start;
441 struct geometry_s end;
442
443 // Calculate the position
444 float position = position_calculate( this, a_frame );
445 float delta = delta_calculate( this, a_frame );
446
447 // Obtain the normalised width and height from the a_frame
448 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
449 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
450
451 // Now parse the geometries
452 geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
453 geometry_parse( &end, &start, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
454
455 // Now parse the alignment
456 result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
457 result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
458
459 // Since we are the consumer of the b_frame, we must pass along these
460 // consumer properties from the a_frame
461 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
462 mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) );
463
464 // Do the calculation
465 geometry_calculate( &result, &start, &end, position );
466
467 // Get the image from the b frame
468 uint8_t *image_b;
469 int width_b = *width;
470 int height_b = *height;
471
472 if ( get_b_frame_image( b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
473 {
474 uint8_t *dest = *image;
475 uint8_t *src = image_b;
476 int bpp = 2;
477 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
478 int progressive = mlt_properties_get_int( a_props, "progressive" ) ||
479 mlt_properties_get_int( a_props, "consumer_progressive" ) ||
480 mlt_properties_get_int( properties, "progressive" );
481 int field;
482
483 // See if the alpha channel is our destination
484 if ( mlt_properties_get( properties, "a_frame" ) != NULL )
485 {
486 bpp = 1;
487
488 // Get or make the a_frame alpha channel
489 dest = mlt_frame_get_alpha_mask( a_frame );
490 if ( dest == NULL )
491 {
492 // Allocate the alpha
493 dest = mlt_pool_alloc( *width * *height );
494 mlt_properties_set_data( a_props, "alpha", dest, *width * *height, ( mlt_destructor )mlt_pool_release, NULL );
495
496 // Set alpha call back
497 a_frame->get_alpha_mask = transition_get_alpha_mask;
498 }
499
500 // If the source is an image, convert its YUV to an alpha channel
501 if ( mlt_properties_get( properties, "b_frame" ) == NULL )
502 {
503 if ( alpha == NULL )
504 {
505 // Allocate the alpha
506 alpha = mlt_pool_alloc( width_b * height_b );
507 mlt_properties_set_data( b_props, "alpha", alpha, width_b * height_b, ( mlt_destructor )mlt_pool_release, NULL );
508
509 // Set alpha call back
510 b_frame->get_alpha_mask = transition_get_alpha_mask;
511 }
512
513 // Copy the Y values into alpha
514 uint8_t *p = image_b;
515 uint8_t *q = alpha;
516 int i;
517 for ( i = 0; i < width_b * height_b; i ++, p += 2 )
518 *q ++ = *p;
519
520 // Setup to composite from the alpha channel
521 src = alpha;
522 alpha = NULL;
523 }
524 }
525
526 // See if the alpha channel is our source
527 if ( mlt_properties_get( properties, "b_frame" ) != NULL )
528 {
529 // If we do not have an alpha channel fabricate it
530 if ( alpha == NULL )
531 {
532 // Allocate the alpha
533 alpha = mlt_pool_alloc( width_b * height_b );
534 mlt_properties_set_data( b_props, "alpha", alpha, width_b * height_b, ( mlt_destructor )mlt_pool_release, NULL );
535
536 // Set alpha call back
537 b_frame->get_alpha_mask = transition_get_alpha_mask;
538
539 // Copy the Y values into alpha
540 uint8_t *p = image_b;
541 uint8_t *q = alpha;
542 int i;
543 for ( i = 0; i < width_b * height_b; i ++, p += 2 )
544 *q ++ = *p;
545 }
546
547 // If the destination is image, convert the alpha channel to YUV
548 if ( mlt_properties_get( properties, "a_frame" ) == NULL )
549 {
550 uint8_t *p = alpha;
551 uint8_t *q = image_b;
552 int i;
553
554 for ( i = 0; i < width_b * height_b; i ++, p ++ )
555 {
556 *q ++ = 16 + ( ( float )*p / 255 * 220 ); // 220 is the luma range from 16-235
557 *q ++ = 128;
558 }
559 }
560 else
561 {
562 // Setup to composite from the alpha channel
563 src = alpha;
564 bpp = 1;
565 }
566
567 // Never the apply the alpha channel to this type of operation
568 alpha = NULL;
569 }
570
571 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
572 {
573 // Assume lower field (0) first
574 float field_position = position + field * delta;
575
576 // Do the calculation
577 geometry_calculate( &result, &start, &end, field_position );
578
579 // Align
580 alignment_calculate( &result );
581
582 // Composite the b_frame on the a_frame
583 composite_yuv( dest, *width, *height, bpp, src, width_b, height_b, alpha, result, progressive ? -1 : field );
584 }
585 }
586 }
587
588 return 0;
589 }
590
591 /** Composition transition processing.
592 */
593
594 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
595 {
596 // Propogate the transition properties to the b frame
597 mlt_properties b_props = mlt_frame_properties( b_frame );
598 mlt_properties_set_data( b_props, "transition_composite", this, 0, NULL, NULL );
599 mlt_frame_push_get_image( a_frame, transition_get_image );
600 mlt_frame_push_frame( a_frame, b_frame );
601 return a_frame;
602 }
603
604 /** Constructor for the filter.
605 */
606
607 mlt_transition transition_composite_init( char *arg )
608 {
609 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
610 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
611 {
612 this->process = composite_process;
613 mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" );
614 mlt_properties_set( mlt_transition_properties( this ), "end", "" );
615 }
616 return this;
617 }
618