src/framework/mlt_frame.c
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37 struct mlt_geometry_item_s item;
38 int nw; // normalised width
39 int nh; // normalised height
40 int sw; // scaled width, not including consumer scale based upon w/nw
41 int sh; // scaled height, not including consumer scale based upon h/nh
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44 };
45
46 /** Parse the alignment properties into the geometry.
47 */
48
49 static int alignment_parse( char* align )
50 {
51 int ret = 0;
52
53 if ( align == NULL );
54 else if ( isdigit( align[ 0 ] ) )
55 ret = atoi( align );
56 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
57 ret = 1;
58 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
59 ret = 2;
60
61 return ret;
62 }
63
64 /** Calculate real geometry.
65 */
66
67 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
68 {
69 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
70 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
71 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
72 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
73 int length = mlt_geometry_get_length( geometry );
74
75 // Allow wrapping
76 if ( !repeat_off && position >= length && length != 0 )
77 {
78 int section = position / length;
79 position -= section * length;
80 if ( !mirror_off && section % 2 == 1 )
81 position = length - position;
82 }
83
84 // Fetch the key for the position
85 mlt_geometry_fetch( geometry, &output->item, position );
86 }
87
88 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
89 {
90 // Loop variable for property interrogation
91 int i = 0;
92
93 // Get the properties of the transition
94 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
95
96 // Create an empty geometries object
97 mlt_geometry geometry = mlt_geometry_init( );
98
99 // Get the in and out position
100 mlt_position in = mlt_transition_get_in( this );
101 mlt_position out = mlt_transition_get_out( this );
102 int length = out - in + 1;
103 double cycle = mlt_properties_get_double( properties, "cycle" );
104
105 // Get the new style geometry string
106 char *property = mlt_properties_get( properties, "geometry" );
107
108 // Allow a geometry repeat cycle
109 if ( cycle >= 1 )
110 length = cycle;
111 else if ( cycle > 0 )
112 length *= cycle;
113
114 // Parse the geometry if we have one
115 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
116
117 // Check if we're using the old style geometry
118 if ( property == NULL )
119 {
120 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
121 // practical use - while deprecated, it has been slightly extended too - keys can now
122 // be specified out of order, and can be blanked or NULL to simulate removal
123
124 // Structure to use for parsing and inserting
125 struct mlt_geometry_item_s item;
126
127 // Parse the start property
128 item.frame = 0;
129 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
130 mlt_geometry_insert( geometry, &item );
131
132 // Parse the keys in between
133 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
134 {
135 // Get the name of the property
136 char *name = mlt_properties_get_name( properties, i );
137
138 // Check that it's valid
139 if ( !strncmp( name, "key[", 4 ) )
140 {
141 // Get the value of the property
142 char *value = mlt_properties_get_value( properties, i );
143
144 // Determine the frame number
145 item.frame = atoi( name + 4 );
146
147 // Parse and add to the list
148 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
149 mlt_geometry_insert( geometry, &item );
150 else
151 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
152 }
153 }
154
155 // Parse the end
156 item.frame = -1;
157 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
158 mlt_geometry_insert( geometry, &item );
159 }
160
161 return geometry;
162 }
163
164 /** Adjust position according to scaled size and alignment properties.
165 */
166
167 static void alignment_calculate( struct geometry_s *geometry )
168 {
169 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
170 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
171 }
172
173 /** Calculate the position for this frame.
174 */
175
176 static int position_calculate( mlt_transition this, mlt_position position )
177 {
178 // Get the in and out position
179 mlt_position in = mlt_transition_get_in( this );
180
181 // Now do the calcs
182 return position - in;
183 }
184
185 /** Calculate the field delta for this frame - position between two frames.
186 */
187
188 static inline double delta_calculate( mlt_transition this, mlt_frame frame, mlt_position position )
189 {
190 // Get the in and out position
191 mlt_position in = mlt_transition_get_in( this );
192 mlt_position out = mlt_transition_get_out( this );
193 double length = out - in + 1;
194
195 // Now do the calcs
196 double x = ( double )( position - in ) / length;
197 double y = ( double )( position + 1 - in ) / length;
198
199 return length * ( y - x ) / 2.0;
200 }
201
202 static int get_value( mlt_properties properties, char *preferred, char *fallback )
203 {
204 int value = mlt_properties_get_int( properties, preferred );
205 if ( value == 0 )
206 value = mlt_properties_get_int( properties, fallback );
207 return value;
208 }
209
210 /** A linear threshold determination function.
211 */
212
213 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
214 {
215 if ( a < edge1 )
216 return 0;
217
218 if ( a >= edge2 )
219 return 0x10000;
220
221 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
222 }
223
224 /** A smoother, non-linear threshold determination function.
225 */
226
227 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
228 {
229 if ( a < edge1 )
230 return 0;
231
232 if ( a >= edge2 )
233 return 0x10000;
234
235 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
236
237 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
238 }
239
240 /** Load the luma map from PGM stream.
241 */
242
243 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
244 {
245 uint8_t *data = NULL;
246 while (1)
247 {
248 char line[128];
249 char comment[128];
250 int i = 2;
251 int maxval;
252 int bpp;
253 uint16_t *p;
254
255 line[127] = '\0';
256
257 // get the magic code
258 if ( fgets( line, 127, f ) == NULL )
259 break;
260
261 // skip comments
262 while ( sscanf( line, " #%s", comment ) > 0 )
263 if ( fgets( line, 127, f ) == NULL )
264 break;
265
266 if ( line[0] != 'P' || line[1] != '5' )
267 break;
268
269 // skip white space and see if a new line must be fetched
270 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
271 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
272 break;
273
274 // skip comments
275 while ( sscanf( line, " #%s", comment ) > 0 )
276 if ( fgets( line, 127, f ) == NULL )
277 break;
278
279 // get the dimensions
280 if ( line[0] == 'P' )
281 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
282 else
283 i = sscanf( line, "%d %d %d", width, height, &maxval );
284
285 // get the height value, if not yet
286 if ( i < 2 )
287 {
288 if ( fgets( line, 127, f ) == NULL )
289 break;
290
291 // skip comments
292 while ( sscanf( line, " #%s", comment ) > 0 )
293 if ( fgets( line, 127, f ) == NULL )
294 break;
295
296 i = sscanf( line, "%d", height );
297 if ( i == 0 )
298 break;
299 else
300 i = 2;
301 }
302
303 // get the maximum gray value, if not yet
304 if ( i < 3 )
305 {
306 if ( fgets( line, 127, f ) == NULL )
307 break;
308
309 // skip comments
310 while ( sscanf( line, " #%s", comment ) > 0 )
311 if ( fgets( line, 127, f ) == NULL )
312 break;
313
314 i = sscanf( line, "%d", &maxval );
315 if ( i == 0 )
316 break;
317 }
318
319 // determine if this is one or two bytes per pixel
320 bpp = maxval > 255 ? 2 : 1;
321
322 // allocate temporary storage for the raw data
323 data = mlt_pool_alloc( *width * *height * bpp );
324 if ( data == NULL )
325 break;
326
327 // read the raw data
328 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
329 break;
330
331 // allocate the luma bitmap
332 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
333 if ( *map == NULL )
334 break;
335
336 // proces the raw data into the luma bitmap
337 for ( i = 0; i < *width * *height * bpp; i += bpp )
338 {
339 if ( bpp == 1 )
340 *p++ = data[ i ] << 8;
341 else
342 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
343 }
344
345 break;
346 }
347
348 if ( data != NULL )
349 mlt_pool_release( data );
350 }
351
352 /** Generate a luma map from any YUV image.
353 */
354
355 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
356 {
357 int i;
358
359 // allocate the luma bitmap
360 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
361 if ( *map == NULL )
362 return;
363
364 // proces the image data into the luma bitmap
365 for ( i = 0; i < width * height * 2; i += 2 )
366 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
367 }
368
369
370 /** Composite a source line over a destination line
371 */
372
373 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven_x )
374 {
375 register int j;
376 register int a;
377 register int mix;
378
379 for ( j = 0; j < width; j ++ )
380 {
381 a = *alpha_b ++;
382 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
383 mix = ( mix * a ) >> 8;
384 *dest = ( ( *src++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
385 dest++;
386 *dest = ( *( src ++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
387 dest++;
388 *alpha_a = mix | *alpha_a;
389 alpha_a ++;
390 }
391 }
392
393 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven_x )
394 {
395 register int j;
396 register int a;
397 register int mix;
398
399 for ( j = 0; j < width; j ++ )
400 {
401 a = *alpha_b ++ | *alpha_a;
402 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
403 mix = ( mix * a ) >> 8;
404 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
405 dest++;
406 *dest = ( *( src ++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
407 dest++;
408 *alpha_a = mix | *alpha_a;
409 alpha_a ++;
410 }
411 }
412
413 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven_x )
414 {
415 register int j;
416 register int a;
417 register int mix;
418
419 for ( j = 0; j < width; j ++ )
420 {
421 a = *alpha_b ++ & *alpha_a;
422 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
423 mix = ( mix * a ) >> 8;
424 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
425 dest++;
426 *dest = ( *( src ++ ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
427 dest++;
428 *alpha_a = mix | *alpha_a;
429 alpha_a ++;
430 }
431 }
432
433 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven_x )
434 {
435 register int j;
436 register int a;
437 register int mix;
438
439 for ( j = 0; j < width; j ++ )
440 {
441 a = *alpha_b ++ ^ *alpha_a;
442 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
443 mix = ( mix * a ) >> 8;
444 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
445 dest++;
446 *dest = ( *( src ++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
447 dest++;
448 *alpha_a = mix | *alpha_a;
449 alpha_a ++;
450 }
451 }
452
453 /** Composite function.
454 */
455
456 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
457 {
458 int ret = 0;
459 int i;
460 int x_src = 0, y_src = 0;
461 int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 );
462 int step = ( field > -1 ) ? 2 : 1;
463 int bpp = 2;
464 int stride_src = width_src * bpp;
465 int stride_dest = width_dest * bpp;
466
467 // Adjust to consumer scale
468 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
469 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
470 int uneven_x = 2 * ( x % 2 );
471
472 // optimization points - no work to do
473 if ( width_src <= 0 || height_src <= 0 )
474 return ret;
475
476 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
477 return ret;
478
479 // crop overlay off the left edge of frame
480 if ( x < 0 )
481 {
482 x_src = -x;
483 width_src -= x_src;
484 x = 0;
485 }
486
487 // crop overlay beyond right edge of frame
488 if ( x + width_src > width_dest )
489 width_src = width_dest - x;
490
491 // crop overlay off the top edge of the frame
492 if ( y < 0 )
493 {
494 y_src = -y;
495 height_src -= y_src;
496 y = 0;
497 }
498
499 // crop overlay below bottom edge of frame
500 if ( y + height_src > height_dest )
501 height_src = height_dest - y;
502
503 // offset pointer into overlay buffer based on cropping
504 p_src += x_src * bpp + y_src * stride_src;
505
506 // offset pointer into frame buffer based upon positive coordinates only!
507 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
508
509 // offset pointer into alpha channel based upon cropping
510 alpha_b += x_src + y_src * stride_src / bpp;
511 alpha_a += x + y * stride_dest / bpp;
512
513 // offset pointer into luma channel based upon cropping
514 if ( p_luma )
515 p_luma += x_src + y_src * stride_src / bpp;
516
517 // Assuming lower field first
518 // Special care is taken to make sure the b_frame is aligned to the correct field.
519 // field 0 = lower field and y should be odd (y is 0-based).
520 // field 1 = upper field and y should be even.
521 if ( ( field > -1 ) && ( y % 2 == field ) )
522 {
523 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
524 p_dest += stride_dest;
525 else
526 p_dest -= stride_dest;
527 }
528
529 // On the second field, use the other lines from b_frame
530 if ( field == 1 )
531 {
532 p_src += stride_src;
533 alpha_b += stride_src / bpp;
534 alpha_a += stride_dest / bpp;
535 height_src--;
536 }
537
538 stride_src *= step;
539 stride_dest *= step;
540 int alpha_b_stride = stride_src / bpp;
541 int alpha_a_stride = stride_dest / bpp;
542
543 // now do the compositing only to cropped extents
544 for ( i = 0; i < height_src; i += step )
545 {
546 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, softness, uneven_x );
547
548 p_src += stride_src;
549 p_dest += stride_dest;
550 alpha_b += alpha_b_stride;
551 alpha_a += alpha_a_stride;
552 if ( p_luma )
553 p_luma += alpha_b_stride;
554 }
555
556 return ret;
557 }
558
559
560 /** Scale 16bit greyscale luma map using nearest neighbor.
561 */
562
563 static inline void
564 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
565 {
566 register int i, j;
567 register int x_step = ( src_width << 16 ) / dest_width;
568 register int y_step = ( src_height << 16 ) / dest_height;
569 register int x, y = 0;
570
571 for ( i = 0; i < dest_height; i++ )
572 {
573 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
574 x = 0;
575
576 for ( j = 0; j < dest_width; j++ )
577 {
578 *dest_buf++ = src[ x >> 16 ] ^ invert;
579 x += x_step;
580 }
581 y += y_step;
582 }
583 }
584
585 static uint16_t* get_luma( mlt_properties properties, int width, int height )
586 {
587 // The cached luma map information
588 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
589 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
590 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
591 int invert = mlt_properties_get_int( properties, "luma_invert" );
592
593 // If the filename property changed, reload the map
594 char *resource = mlt_properties_get( properties, "luma" );
595
596 char temp[ 512 ];
597
598 if ( luma_width == 0 || luma_height == 0 )
599 {
600 luma_width = width;
601 luma_height = height;
602 }
603
604 if ( resource != NULL && strchr( resource, '%' ) )
605 {
606 // TODO: Clean up quick and dirty compressed/existence check
607 FILE *test;
608 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
609 test = fopen( temp, "r" );
610 if ( test == NULL )
611 strcat( temp, ".png" );
612 else
613 fclose( test );
614 resource = temp;
615 }
616
617 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
618 {
619 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
620 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
621 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
622
623 // Load the original luma once
624 if ( orig_bitmap == NULL )
625 {
626 char *extension = strrchr( resource, '.' );
627
628 // See if it is a PGM
629 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
630 {
631 // Open PGM
632 FILE *f = fopen( resource, "r" );
633 if ( f != NULL )
634 {
635 // Load from PGM
636 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
637 fclose( f );
638
639 // Remember the original size for subsequent scaling
640 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
641 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
642 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
643 }
644 }
645 else
646 {
647 // Get the factory producer service
648 char *factory = mlt_properties_get( properties, "factory" );
649
650 // Create the producer
651 mlt_producer producer = mlt_factory_producer( factory, resource );
652
653 // If we have one
654 if ( producer != NULL )
655 {
656 // Get the producer properties
657 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
658
659 // Ensure that we loop
660 mlt_properties_set( producer_properties, "eof", "loop" );
661
662 // Now pass all producer. properties on the transition down
663 mlt_properties_pass( producer_properties, properties, "luma." );
664
665 // We will get the alpha frame from the producer
666 mlt_frame luma_frame = NULL;
667
668 // Get the luma frame
669 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
670 {
671 uint8_t *luma_image;
672 mlt_image_format luma_format = mlt_image_yuv422;
673
674 // Get image from the luma producer
675 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
676 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
677
678 // Generate the luma map
679 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
680 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
681
682 // Remember the original size for subsequent scaling
683 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
684 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
685 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
686
687 // Cleanup the luma frame
688 mlt_frame_close( luma_frame );
689 }
690
691 // Cleanup the luma producer
692 mlt_producer_close( producer );
693 }
694 }
695 }
696 // Scale luma map
697 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
698 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
699
700 // Remember the scaled luma size to prevent unnecessary scaling
701 mlt_properties_set_int( properties, "_luma.width", width );
702 mlt_properties_set_int( properties, "_luma.height", height );
703 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
704 }
705 return luma_bitmap;
706 }
707
708 /** Get the properly sized image from b_frame.
709 */
710
711 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
712 {
713 int ret = 0;
714 mlt_image_format format = mlt_image_yuv422;
715
716 // Get the properties objects
717 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
718 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
719
720 if ( mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
721 {
722 // Adjust b_frame pixel aspect
723 int normalised_width = geometry->item.w;
724 int normalised_height = geometry->item.h;
725 int real_width = get_value( b_props, "real_width", "width" );
726 int real_height = get_value( b_props, "real_height", "height" );
727 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
728 double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
729 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
730 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
731 int scaled_width = rint( 0.5 + ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
732 int scaled_height = real_height;
733
734 // Now ensure that our images fit in the normalised frame
735 if ( scaled_width > normalised_width )
736 {
737 scaled_height = rint( 0.5 + scaled_height * normalised_width / scaled_width );
738 scaled_width = normalised_width;
739 }
740 if ( scaled_height > normalised_height )
741 {
742 scaled_width = rint( 0.5 + scaled_width * normalised_height / scaled_height );
743 scaled_height = normalised_height;
744 }
745
746 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
747 // ????: Shouln't this be the default behaviour?
748 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
749 {
750 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height < normalised_width )
751 {
752 scaled_width = rint( 0.5 + scaled_width * normalised_height / scaled_height );
753 scaled_height = normalised_height;
754 }
755 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
756 {
757 scaled_height = rint( 0.5 + scaled_height * normalised_width / scaled_width );
758 scaled_width = normalised_width;
759 }
760 }
761
762 // Save the new scaled dimensions
763 geometry->sw = scaled_width;
764 geometry->sh = scaled_height;
765 }
766 else
767 {
768 geometry->sw = geometry->item.w;
769 geometry->sh = geometry->item.h;
770 }
771
772 // We want to ensure that we bypass resize now...
773 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
774
775 // Take into consideration alignment for optimisation (titles are a special case)
776 if ( !mlt_properties_get_int( properties, "titles" ) )
777 alignment_calculate( geometry );
778
779 // Adjust to consumer scale
780 *width = rint( 0.5 + geometry->sw * *width / geometry->nw );
781 *height = rint( 0.5 + geometry->sh * *height / geometry->nh );
782
783 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
784
785 return ret && image != NULL;
786 }
787
788
789 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
790 {
791 // Get the properties from the transition
792 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
793
794 // Get the properties from the frame
795 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
796
797 // Structures for geometry
798 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
799
800 // Obtain the normalised width and height from the a_frame
801 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
802 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
803
804 char *name = mlt_properties_get( properties, "_unique_id" );
805 char key[ 256 ];
806
807 sprintf( key, "%s.in", name );
808 if ( mlt_properties_get( a_props, key ) )
809 {
810 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
811 }
812 else
813 {
814 // Now parse the geometries
815 if ( start == NULL )
816 {
817 // Parse the transitions properties
818 start = transition_parse_keys( this, normalised_width, normalised_height );
819
820 // Assign to properties to ensure we get destroyed
821 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
822 }
823 else
824 {
825 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
826 double cycle = mlt_properties_get_double( properties, "cycle" );
827 if ( cycle > 1 )
828 length = cycle;
829 else if ( cycle > 0 )
830 length *= cycle;
831 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
832 }
833
834 // Do the calculation
835 geometry_calculate( this, result, position );
836
837 // Assign normalised info
838 result->nw = normalised_width;
839 result->nh = normalised_height;
840 }
841
842 // Now parse the alignment
843 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
844 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
845
846 return start;
847 }
848
849 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
850 {
851 // Create a frame to return
852 mlt_frame b_frame = mlt_frame_init( );
853
854 // Get the properties of the a frame
855 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
856
857 // Get the properties of the b frame
858 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
859
860 // Get the position
861 int position = position_calculate( this, frame_position );
862
863 // Get the unique id of the transition
864 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
865 char key[ 256 ];
866
867 // Destination image
868 uint8_t *dest = NULL;
869
870 // Get the image and dimensions
871 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
872 int width = mlt_properties_get_int( a_props, "width" );
873 int height = mlt_properties_get_int( a_props, "height" );
874 int format = mlt_properties_get_int( a_props, "format" );
875
876 // Pointers for copy operation
877 uint8_t *p;
878
879 // Coordinates
880 int w = 0;
881 int h = 0;
882 int x = 0;
883 int y = 0;
884
885 int ss = 0;
886 int ds = 0;
887
888 // Will need to know region to copy
889 struct geometry_s result;
890
891 // Calculate the region now
892 composite_calculate( this, &result, a_frame, position );
893
894 // Need to scale down to actual dimensions
895 x = rint( 0.5 + result.item.x * width / result.nw );
896 y = rint( 0.5 + result.item.y * height / result.nh );
897 w = rint( 0.5 + result.item.w * width / result.nw );
898 h = rint( 0.5 + result.item.h * height / result.nh );
899
900 if ( x % 2 )
901 {
902 x --;
903 w ++;
904 }
905
906 // Store the key
907 sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
908 mlt_properties_parse( a_props, key );
909 sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
910 mlt_properties_parse( a_props, key );
911
912 ds = w * 2;
913 ss = width * 2;
914
915 // Now we need to create a new destination image
916 dest = mlt_pool_alloc( w * h * 2 );
917
918 // Assign to the new frame
919 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
920 mlt_properties_set_int( b_props, "width", w );
921 mlt_properties_set_int( b_props, "height", h );
922 mlt_properties_set_int( b_props, "format", format );
923
924 if ( y < 0 )
925 {
926 dest += ( ds * -y );
927 h += y;
928 y = 0;
929 }
930
931 if ( y + h > height )
932 h -= ( y + h - height );
933
934 if ( x < 0 )
935 {
936 dest += -x * 2;
937 w += x;
938 x = 0;
939 }
940
941 if ( w > 0 && h > 0 )
942 {
943 // Copy the region of the image
944 p = image + y * ss + x * 2;
945
946 while ( h -- )
947 {
948 memcpy( dest, p, w * 2 );
949 dest += ds;
950 p += ss;
951 }
952 }
953
954 // Assign this position to the b frame
955 mlt_frame_set_position( b_frame, frame_position );
956 mlt_properties_set_int( b_props, "distort", 1 );
957
958 // Return the frame
959 return b_frame;
960 }
961
962 /** Get the image.
963 */
964
965 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
966 {
967 // Get the b frame from the stack
968 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
969
970 // Get the transition from the a frame
971 mlt_transition this = mlt_frame_pop_service( a_frame );
972
973 // Get in and out
974 double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
975 int out = mlt_frame_pop_service_int( a_frame );
976 int in = mlt_frame_pop_service_int( a_frame );
977
978 // Get the properties from the transition
979 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
980
981 // TODO: clean up always_active behaviour
982 if ( mlt_properties_get_int( properties, "always_active" ) )
983 {
984 mlt_events_block( properties, properties );
985 mlt_properties_set_int( properties, "in", in );
986 mlt_properties_set_int( properties, "out", out );
987 mlt_events_unblock( properties, properties );
988 }
989
990 // This compositer is yuv422 only
991 *format = mlt_image_yuv422;
992
993 if ( b_frame != NULL )
994 {
995 // Get the properties of the a frame
996 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
997
998 // Get the properties of the b frame
999 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1000
1001 // Structures for geometry
1002 struct geometry_s result;
1003
1004 // Calculate the position
1005 double delta = delta_calculate( this, a_frame, position );
1006
1007 // Get the image from the b frame
1008 uint8_t *image_b = NULL;
1009 int width_b = *width;
1010 int height_b = *height;
1011
1012 // Vars for alphas
1013 uint8_t *alpha_a = NULL;
1014 uint8_t *alpha_b = NULL;
1015
1016 // Composites always need scaling... defaulting to lowest
1017 char *rescale = mlt_properties_get( a_props, "rescale.interp" );
1018 if ( rescale == NULL || !strcmp( rescale, "none" ) )
1019 rescale = "nearest";
1020 mlt_properties_set( a_props, "rescale.interp", rescale );
1021 mlt_properties_set( b_props, "rescale.interp", rescale );
1022
1023 // Do the calculation
1024 // NB: Locks needed here since the properties are being modified
1025 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1026 composite_calculate( this, &result, a_frame, position );
1027 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1028
1029 // Since we are the consumer of the b_frame, we must pass along these
1030 // consumer properties from the a_frame
1031 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
1032 mlt_properties_set( b_props, "consumer_deinterlace_method", mlt_properties_get( a_props, "consumer_deinterlace_method" ) );
1033 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1034
1035 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1036 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
1037 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1038 {
1039 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1040 if ( !mlt_frame_is_test_card( a_frame ) )
1041 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1042 return 0;
1043 }
1044
1045 if ( a_frame == b_frame )
1046 {
1047 double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1048 get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1049 alpha_b = mlt_frame_get_alpha_mask( b_frame );
1050 mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1051 }
1052
1053 // Get the image from the a frame
1054 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1055 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1056
1057 // Optimisation - no compositing required
1058 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1059 return 0;
1060
1061 // Need to keep the width/height of the a_frame on the b_frame for titling
1062 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1063 {
1064 mlt_properties_set_int( a_props, "dest_width", *width );
1065 mlt_properties_set_int( a_props, "dest_height", *height );
1066 mlt_properties_set_int( b_props, "dest_width", *width );
1067 mlt_properties_set_int( b_props, "dest_height", *height );
1068 }
1069 else
1070 {
1071 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1072 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1073 }
1074
1075 // Special case for titling...
1076 if ( mlt_properties_get_int( properties, "titles" ) )
1077 {
1078 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1079 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1080 width_b = mlt_properties_get_int( a_props, "dest_width" );
1081 height_b = mlt_properties_get_int( a_props, "dest_height" );
1082 }
1083
1084 if ( *image != image_b && ( image_b != NULL || get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) )
1085 {
1086 uint8_t *dest = *image;
1087 uint8_t *src = image_b;
1088 int progressive =
1089 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1090 mlt_properties_get_int( properties, "progressive" );
1091 int field;
1092
1093 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1094 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1095 char *operator = mlt_properties_get( properties, "operator" );
1096
1097 alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1098
1099 composite_line_fn line_fn = composite_line_yuv;
1100
1101 // Replacement and override
1102 if ( operator != NULL )
1103 {
1104 if ( !strcmp( operator, "or" ) )
1105 line_fn = composite_line_yuv_or;
1106 if ( !strcmp( operator, "and" ) )
1107 line_fn = composite_line_yuv_and;
1108 if ( !strcmp( operator, "xor" ) )
1109 line_fn = composite_line_yuv_xor;
1110 }
1111
1112 // Allow the user to completely obliterate the alpha channels from both frames
1113 if ( mlt_properties_get( properties, "alpha_a" ) )
1114 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1115
1116 if ( mlt_properties_get( properties, "alpha_b" ) )
1117 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1118
1119 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1120 {
1121 // Assume lower field (0) first
1122 double field_position = position + field * delta;
1123
1124 // Do the calculation if we need to
1125 // NB: Locks needed here since the properties are being modified
1126 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1127 composite_calculate( this, &result, a_frame, field_position );
1128 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1129
1130 if ( mlt_properties_get_int( properties, "titles" ) )
1131 {
1132 result.item.w = rint( 0.5 + *width * ( result.item.w / result.nw ) );
1133 result.nw = result.item.w;
1134 result.item.h = rint( 0.5 + *height * ( result.item.h / result.nh ) );
1135 result.nh = *height;
1136 result.sw = width_b;
1137 result.sh = height_b;
1138 }
1139
1140 // Align
1141 alignment_calculate( &result );
1142
1143 // Composite the b_frame on the a_frame
1144 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1145 }
1146 }
1147 }
1148 else
1149 {
1150 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1151 }
1152
1153 return 0;
1154 }
1155
1156 /** Composition transition processing.
1157 */
1158
1159 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1160 {
1161 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1162 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1163 {
1164 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1165 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1166 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1167 }
1168 else
1169 {
1170 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1171 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1172 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1173 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1174 }
1175
1176 mlt_frame_push_service( a_frame, this );
1177 mlt_frame_push_frame( a_frame, b_frame );
1178 mlt_frame_push_get_image( a_frame, transition_get_image );
1179 return a_frame;
1180 }
1181
1182 /** Constructor for the filter.
1183 */
1184
1185 mlt_transition transition_composite_init( char *arg )
1186 {
1187 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1188 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1189 {
1190 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1191
1192 this->process = composite_process;
1193
1194 // Default starting motion and zoom
1195 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1196
1197 // Default factory
1198 mlt_properties_set( properties, "factory", "fezzik" );
1199
1200 // Inform apps and framework that this is a video only transition
1201 mlt_properties_set_int( properties, "_transition_type", 1 );
1202 }
1203 return this;
1204 }