transition_composite.c: add animatable geometry "pan" property. This suppresses impli...
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37 struct mlt_geometry_item_s item;
38 int nw; // normalised width
39 int nh; // normalised height
40 int sw; // scaled width, not including consumer scale based upon w/nw
41 int sh; // scaled height, not including consumer scale based upon h/nh
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44 int x_src;
45 int y_src;
46 };
47
48 /** Parse the alignment properties into the geometry.
49 */
50
51 static int alignment_parse( char* align )
52 {
53 int ret = 0;
54
55 if ( align == NULL );
56 else if ( isdigit( align[ 0 ] ) )
57 ret = atoi( align );
58 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
59 ret = 1;
60 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
61 ret = 2;
62
63 return ret;
64 }
65
66 /** Calculate real geometry.
67 */
68
69 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
70 {
71 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
72 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
73 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
74 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
75 int length = mlt_geometry_get_length( geometry );
76
77 // Allow wrapping
78 if ( !repeat_off && position >= length && length != 0 )
79 {
80 int section = position / length;
81 position -= section * length;
82 if ( !mirror_off && section % 2 == 1 )
83 position = length - position;
84 }
85
86 // Fetch the key for the position
87 mlt_geometry_fetch( geometry, &output->item, position );
88 }
89
90 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
91 {
92 // Loop variable for property interrogation
93 int i = 0;
94
95 // Get the properties of the transition
96 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
97
98 // Create an empty geometries object
99 mlt_geometry geometry = mlt_geometry_init( );
100
101 // Get the in and out position
102 mlt_position in = mlt_transition_get_in( this );
103 mlt_position out = mlt_transition_get_out( this );
104 int length = out - in + 1;
105 double cycle = mlt_properties_get_double( properties, "cycle" );
106
107 // Get the new style geometry string
108 char *property = mlt_properties_get( properties, "geometry" );
109
110 // Allow a geometry repeat cycle
111 if ( cycle >= 1 )
112 length = cycle;
113 else if ( cycle > 0 )
114 length *= cycle;
115
116 // Parse the geometry if we have one
117 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
118
119 // Check if we're using the old style geometry
120 if ( property == NULL )
121 {
122 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
123 // practical use - while deprecated, it has been slightly extended too - keys can now
124 // be specified out of order, and can be blanked or NULL to simulate removal
125
126 // Structure to use for parsing and inserting
127 struct mlt_geometry_item_s item;
128
129 // Parse the start property
130 item.frame = 0;
131 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
132 mlt_geometry_insert( geometry, &item );
133
134 // Parse the keys in between
135 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
136 {
137 // Get the name of the property
138 char *name = mlt_properties_get_name( properties, i );
139
140 // Check that it's valid
141 if ( !strncmp( name, "key[", 4 ) )
142 {
143 // Get the value of the property
144 char *value = mlt_properties_get_value( properties, i );
145
146 // Determine the frame number
147 item.frame = atoi( name + 4 );
148
149 // Parse and add to the list
150 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
151 mlt_geometry_insert( geometry, &item );
152 else
153 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
154 }
155 }
156
157 // Parse the end
158 item.frame = -1;
159 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
160 mlt_geometry_insert( geometry, &item );
161 }
162
163 return geometry;
164 }
165
166 /** Adjust position according to scaled size and alignment properties.
167 */
168
169 static void alignment_calculate( struct geometry_s *geometry )
170 {
171 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
172 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
173 }
174
175 /** Calculate the position for this frame.
176 */
177
178 static int position_calculate( mlt_transition this, mlt_position position )
179 {
180 // Get the in and out position
181 mlt_position in = mlt_transition_get_in( this );
182
183 // Now do the calcs
184 return position - in;
185 }
186
187 /** Calculate the field delta for this frame - position between two frames.
188 */
189
190 static inline double delta_calculate( mlt_transition this, mlt_frame frame, mlt_position position )
191 {
192 // Get the in and out position
193 mlt_position in = mlt_transition_get_in( this );
194 mlt_position out = mlt_transition_get_out( this );
195 double length = out - in + 1;
196
197 // Now do the calcs
198 double x = ( double )( position - in ) / length;
199 double y = ( double )( position + 1 - in ) / length;
200
201 return length * ( y - x ) / 2.0;
202 }
203
204 static int get_value( mlt_properties properties, char *preferred, char *fallback )
205 {
206 int value = mlt_properties_get_int( properties, preferred );
207 if ( value == 0 )
208 value = mlt_properties_get_int( properties, fallback );
209 return value;
210 }
211
212 /** A linear threshold determination function.
213 */
214
215 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
216 {
217 if ( a < edge1 )
218 return 0;
219
220 if ( a >= edge2 )
221 return 0x10000;
222
223 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
224 }
225
226 /** A smoother, non-linear threshold determination function.
227 */
228
229 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
230 {
231 if ( a < edge1 )
232 return 0;
233
234 if ( a >= edge2 )
235 return 0x10000;
236
237 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
238
239 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
240 }
241
242 /** Load the luma map from PGM stream.
243 */
244
245 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
246 {
247 uint8_t *data = NULL;
248 while (1)
249 {
250 char line[128];
251 char comment[128];
252 int i = 2;
253 int maxval;
254 int bpp;
255 uint16_t *p;
256
257 line[127] = '\0';
258
259 // get the magic code
260 if ( fgets( line, 127, f ) == NULL )
261 break;
262
263 // skip comments
264 while ( sscanf( line, " #%s", comment ) > 0 )
265 if ( fgets( line, 127, f ) == NULL )
266 break;
267
268 if ( line[0] != 'P' || line[1] != '5' )
269 break;
270
271 // skip white space and see if a new line must be fetched
272 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
273 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
274 break;
275
276 // skip comments
277 while ( sscanf( line, " #%s", comment ) > 0 )
278 if ( fgets( line, 127, f ) == NULL )
279 break;
280
281 // get the dimensions
282 if ( line[0] == 'P' )
283 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
284 else
285 i = sscanf( line, "%d %d %d", width, height, &maxval );
286
287 // get the height value, if not yet
288 if ( i < 2 )
289 {
290 if ( fgets( line, 127, f ) == NULL )
291 break;
292
293 // skip comments
294 while ( sscanf( line, " #%s", comment ) > 0 )
295 if ( fgets( line, 127, f ) == NULL )
296 break;
297
298 i = sscanf( line, "%d", height );
299 if ( i == 0 )
300 break;
301 else
302 i = 2;
303 }
304
305 // get the maximum gray value, if not yet
306 if ( i < 3 )
307 {
308 if ( fgets( line, 127, f ) == NULL )
309 break;
310
311 // skip comments
312 while ( sscanf( line, " #%s", comment ) > 0 )
313 if ( fgets( line, 127, f ) == NULL )
314 break;
315
316 i = sscanf( line, "%d", &maxval );
317 if ( i == 0 )
318 break;
319 }
320
321 // determine if this is one or two bytes per pixel
322 bpp = maxval > 255 ? 2 : 1;
323
324 // allocate temporary storage for the raw data
325 data = mlt_pool_alloc( *width * *height * bpp );
326 if ( data == NULL )
327 break;
328
329 // read the raw data
330 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
331 break;
332
333 // allocate the luma bitmap
334 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
335 if ( *map == NULL )
336 break;
337
338 // proces the raw data into the luma bitmap
339 for ( i = 0; i < *width * *height * bpp; i += bpp )
340 {
341 if ( bpp == 1 )
342 *p++ = data[ i ] << 8;
343 else
344 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
345 }
346
347 break;
348 }
349
350 if ( data != NULL )
351 mlt_pool_release( data );
352 }
353
354 /** Generate a luma map from any YUV image.
355 */
356
357 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
358 {
359 int i;
360
361 // allocate the luma bitmap
362 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
363 if ( *map == NULL )
364 return;
365
366 // proces the image data into the luma bitmap
367 for ( i = 0; i < width * height * 2; i += 2 )
368 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
369 }
370
371 static inline int calculate_mix( uint16_t *luma, int j, int soft, int weight, int alpha )
372 {
373 return ( ( ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + soft, weight + soft ) ) * alpha ) >> 8;
374 }
375
376 static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
377 {
378 return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
379 }
380
381 /** Composite a source line over a destination line
382 */
383
384 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
385 {
386 register int j;
387 register int mix;
388
389 for ( j = 0; j < width; j ++ )
390 {
391 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ );
392 *dest = sample_mix( *dest, *src++, mix );
393 dest++;
394 *dest = sample_mix( *dest, *src++, mix );
395 dest++;
396 *alpha_a = ( mix >> 8 ) | *alpha_a;
397 alpha_a ++;
398 }
399 }
400
401 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
402 {
403 register int j;
404 register int mix;
405
406 for ( j = 0; j < width; j ++ )
407 {
408 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a );
409 *dest = sample_mix( *dest, *src++, mix );
410 dest++;
411 *dest = sample_mix( *dest, *src++, mix );
412 dest++;
413 *alpha_a ++ = mix >> 8;
414 }
415 }
416
417 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
418 {
419 register int j;
420 register int mix;
421
422 for ( j = 0; j < width; j ++ )
423 {
424 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a );
425 *dest = sample_mix( *dest, *src++, mix );
426 dest++;
427 *dest = sample_mix( *dest, *src++, mix );
428 dest++;
429 *alpha_a ++ = mix >> 8;
430 }
431 }
432
433 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
434 {
435 register int j;
436 register int mix;
437
438 for ( j = 0; j < width; j ++ )
439 {
440 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a );
441 *dest = sample_mix( *dest, *src++, mix );
442 dest++;
443 *dest = sample_mix( *dest, *src++, mix );
444 dest++;
445 *alpha_a ++ = mix >> 8;
446 }
447 }
448
449 /** Composite function.
450 */
451
452 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
453 {
454 int ret = 0;
455 int i;
456 int x_src = -geometry.x_src, y_src = -geometry.y_src;
457 int uneven_x_src = ( x_src % 2 );
458 int32_t weight = ( ( 1 << 16 ) - 1 ) * ( geometry.item.mix / 100 );
459 int step = ( field > -1 ) ? 2 : 1;
460 int bpp = 2;
461 int stride_src = geometry.sw * bpp;
462 int stride_dest = width_dest * bpp;
463
464 // Adjust to consumer scale
465 int x = rint( geometry.item.x * width_dest / geometry.nw );
466 int y = rint( geometry.item.y * height_dest / geometry.nh );
467 int uneven_x = ( x % 2 );
468
469 // optimization points - no work to do
470 if ( width_src <= 0 || height_src <= 0 || y_src >= height_src || x_src >= width_src )
471 return ret;
472
473 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
474 return ret;
475
476 // cropping affects the source width
477 if ( x_src > 0 )
478 {
479 width_src -= x_src;
480 // and it implies cropping
481 if ( width_src > geometry.item.w )
482 width_src = geometry.item.w;
483 }
484
485 // cropping affects the source height
486 if ( y_src > 0 )
487 {
488 height_src -= y_src;
489 // and it implies cropping
490 if ( height_src > geometry.item.h )
491 height_src = geometry.item.h;
492 }
493
494 // crop overlay off the left edge of frame
495 if ( x < 0 )
496 {
497 x_src = -x;
498 width_src -= x_src;
499 x = 0;
500 }
501
502 // crop overlay beyond right edge of frame
503 if ( x + width_src > width_dest )
504 width_src = width_dest - x;
505
506 // crop overlay off the top edge of the frame
507 if ( y < 0 )
508 {
509 y_src = -y;
510 height_src -= y_src;
511 y = 0;
512 }
513
514 // crop overlay below bottom edge of frame
515 if ( y + height_src > height_dest )
516 height_src = height_dest - y;
517
518 // offset pointer into overlay buffer based on cropping
519 p_src += x_src * bpp + y_src * stride_src;
520
521 // offset pointer into frame buffer based upon positive coordinates only!
522 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
523
524 // offset pointer into alpha channel based upon cropping
525 alpha_b += x_src + y_src * stride_src / bpp;
526 alpha_a += x + y * stride_dest / bpp;
527
528 // offset pointer into luma channel based upon cropping
529 if ( p_luma )
530 p_luma += x_src + y_src * stride_src / bpp;
531
532 // Assuming lower field first
533 // Special care is taken to make sure the b_frame is aligned to the correct field.
534 // field 0 = lower field and y should be odd (y is 0-based).
535 // field 1 = upper field and y should be even.
536 if ( ( field > -1 ) && ( y % 2 == field ) )
537 {
538 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
539 p_dest += stride_dest;
540 else
541 p_dest -= stride_dest;
542 }
543
544 // On the second field, use the other lines from b_frame
545 if ( field == 1 )
546 {
547 p_src += stride_src;
548 alpha_b += stride_src / bpp;
549 alpha_a += stride_dest / bpp;
550 height_src--;
551 }
552
553 stride_src *= step;
554 stride_dest *= step;
555 int alpha_b_stride = stride_src / bpp;
556 int alpha_a_stride = stride_dest / bpp;
557
558 // Snap to even columns to prevent "chroma swap"
559 p_src += uneven_x_src * 2;
560 width_src -= 2 * uneven_x_src;
561 alpha_b += uneven_x_src;
562 p_dest += uneven_x * 2;
563 width_src -= 2 * uneven_x;
564 alpha_a += uneven_x;
565
566 // now do the compositing only to cropped extents
567 for ( i = 0; i < height_src; i += step )
568 {
569 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, softness );
570
571 p_src += stride_src;
572 p_dest += stride_dest;
573 alpha_b += alpha_b_stride;
574 alpha_a += alpha_a_stride;
575 if ( p_luma )
576 p_luma += alpha_b_stride;
577 }
578
579 return ret;
580 }
581
582
583 /** Scale 16bit greyscale luma map using nearest neighbor.
584 */
585
586 static inline void
587 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
588 {
589 register int i, j;
590 register int x_step = ( src_width << 16 ) / dest_width;
591 register int y_step = ( src_height << 16 ) / dest_height;
592 register int x, y = 0;
593
594 for ( i = 0; i < dest_height; i++ )
595 {
596 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
597 x = 0;
598
599 for ( j = 0; j < dest_width; j++ )
600 {
601 *dest_buf++ = src[ x >> 16 ] ^ invert;
602 x += x_step;
603 }
604 y += y_step;
605 }
606 }
607
608 static uint16_t* get_luma( mlt_transition this, mlt_properties properties, int width, int height )
609 {
610 // The cached luma map information
611 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
612 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
613 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
614 int invert = mlt_properties_get_int( properties, "luma_invert" );
615
616 // If the filename property changed, reload the map
617 char *resource = mlt_properties_get( properties, "luma" );
618
619 char temp[ 512 ];
620
621 if ( luma_width == 0 || luma_height == 0 )
622 {
623 luma_width = width;
624 luma_height = height;
625 }
626
627 if ( resource != NULL && strchr( resource, '%' ) )
628 {
629 // TODO: Clean up quick and dirty compressed/existence check
630 FILE *test;
631 sprintf( temp, "%s/lumas/%s/%s", mlt_environment( "MLT_DATA" ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
632 test = fopen( temp, "r" );
633 if ( test == NULL )
634 strcat( temp, ".png" );
635 else
636 fclose( test );
637 resource = temp;
638 }
639
640 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
641 {
642 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
643 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
644 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
645
646 // Load the original luma once
647 if ( orig_bitmap == NULL )
648 {
649 char *extension = strrchr( resource, '.' );
650
651 // See if it is a PGM
652 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
653 {
654 // Open PGM
655 FILE *f = fopen( resource, "r" );
656 if ( f != NULL )
657 {
658 // Load from PGM
659 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
660 fclose( f );
661
662 // Remember the original size for subsequent scaling
663 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
664 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
665 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
666 }
667 }
668 else
669 {
670 // Get the factory producer service
671 char *factory = mlt_properties_get( properties, "factory" );
672
673 // Create the producer
674 mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( this ) );
675 mlt_producer producer = mlt_factory_producer( profile, factory, resource );
676
677 // If we have one
678 if ( producer != NULL )
679 {
680 // Get the producer properties
681 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
682
683 // Ensure that we loop
684 mlt_properties_set( producer_properties, "eof", "loop" );
685
686 // Now pass all producer. properties on the transition down
687 mlt_properties_pass( producer_properties, properties, "luma." );
688
689 // We will get the alpha frame from the producer
690 mlt_frame luma_frame = NULL;
691
692 // Get the luma frame
693 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
694 {
695 uint8_t *luma_image;
696 mlt_image_format luma_format = mlt_image_yuv422;
697
698 // Get image from the luma producer
699 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
700 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
701
702 // Generate the luma map
703 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
704 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
705
706 // Remember the original size for subsequent scaling
707 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
708 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
709 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
710
711 // Cleanup the luma frame
712 mlt_frame_close( luma_frame );
713 }
714
715 // Cleanup the luma producer
716 mlt_producer_close( producer );
717 }
718 }
719 }
720 // Scale luma map
721 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
722 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
723
724 // Remember the scaled luma size to prevent unnecessary scaling
725 mlt_properties_set_int( properties, "_luma.width", width );
726 mlt_properties_set_int( properties, "_luma.height", height );
727 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
728 }
729 return luma_bitmap;
730 }
731
732 /** Get the properly sized image from b_frame.
733 */
734
735 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
736 {
737 int ret = 0;
738 mlt_image_format format = mlt_image_yuv422;
739
740 // Get the properties objects
741 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
742 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
743 uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
744
745 // Do not scale if we are cropping - the compositing rectangle can crop the b image
746 // TODO: Use the animatable w and h of the crop geometry to scale independently of crop rectangle
747 if ( mlt_properties_get( properties, "crop" ) )
748 {
749 int real_width = get_value( b_props, "real_width", "width" );
750 int real_height = get_value( b_props, "real_height", "height" );
751 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
752 double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
753 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
754 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
755 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
756 int scaled_height = real_height;
757 geometry->sw = scaled_width;
758 geometry->sh = scaled_height;
759 }
760 // Normalise aspect ratios and scale preserving aspect ratio
761 else if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
762 {
763 // Adjust b_frame pixel aspect
764 int normalised_width = geometry->item.w;
765 int normalised_height = geometry->item.h;
766 int real_width = get_value( b_props, "real_width", "width" );
767 int real_height = get_value( b_props, "real_height", "height" );
768 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
769 double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
770 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
771 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
772 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
773 int scaled_height = real_height;
774 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d real %dx%d output_ar %f => %f\n", __FILE__,
775 // scaled_width, scaled_height, normalised_width, normalised_height, real_width, real_height,
776 // background_ar, output_ar);
777
778 // Now ensure that our images fit in the normalised frame
779 if ( scaled_width > normalised_width )
780 {
781 scaled_height = rint( scaled_height * normalised_width / scaled_width );
782 scaled_width = normalised_width;
783 }
784 if ( scaled_height > normalised_height )
785 {
786 scaled_width = rint( scaled_width * normalised_height / scaled_height );
787 scaled_height = normalised_height;
788 }
789
790 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
791 // ????: Shouln't this be the default behaviour?
792 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
793 {
794 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
795 {
796 scaled_width = rint( scaled_width * normalised_height / scaled_height );
797 scaled_height = normalised_height;
798 }
799 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
800 {
801 scaled_height = rint( scaled_height * normalised_width / scaled_width );
802 scaled_width = normalised_width;
803 }
804 }
805
806 // Save the new scaled dimensions
807 geometry->sw = scaled_width;
808 geometry->sh = scaled_height;
809 }
810 else
811 {
812 geometry->sw = geometry->item.w;
813 geometry->sh = geometry->item.h;
814 }
815
816 // We want to ensure that we bypass resize now...
817 if ( resize_alpha == 0 )
818 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
819
820 // If we're not aligned, we want a non-transparent background
821 if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
822 mlt_properties_set_int( b_props, "resize_alpha", 255 );
823
824 // Take into consideration alignment for optimisation (titles are a special case)
825 if ( !mlt_properties_get_int( properties, "titles" ) &&
826 mlt_properties_get( properties, "crop" ) == NULL )
827 alignment_calculate( geometry );
828
829 // Adjust to consumer scale
830 *width = rint( geometry->sw * *width / geometry->nw );
831 *height = rint( geometry->sh * *height / geometry->nh );
832 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d resize %dx%d\n", __FILE__,
833 // geometry->sw, geometry->sh, geometry->nw, geometry->nh, *width, *height);
834
835 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
836
837 // Set the frame back
838 mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
839
840 return ret && image != NULL;
841 }
842
843
844 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
845 {
846 // Get the properties from the transition
847 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
848
849 // Get the properties from the frame
850 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
851
852 // Structures for geometry
853 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
854
855 // Obtain the normalised width and height from the a_frame
856 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
857 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
858
859 char *name = mlt_properties_get( properties, "_unique_id" );
860 char key[ 256 ];
861
862 sprintf( key, "%s.in", name );
863 if ( mlt_properties_get( a_props, key ) )
864 {
865 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
866 }
867 else
868 {
869 // Now parse the geometries
870 if ( start == NULL )
871 {
872 // Parse the transitions properties
873 start = transition_parse_keys( this, normalised_width, normalised_height );
874
875 // Assign to properties to ensure we get destroyed
876 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
877 }
878 else
879 {
880 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
881 double cycle = mlt_properties_get_double( properties, "cycle" );
882 if ( cycle > 1 )
883 length = cycle;
884 else if ( cycle > 0 )
885 length *= cycle;
886 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
887 }
888
889 // Do the calculation
890 geometry_calculate( this, result, position );
891
892 // Assign normalised info
893 result->nw = normalised_width;
894 result->nh = normalised_height;
895 }
896
897 // Now parse the alignment
898 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
899 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
900
901 result->x_src = 0;
902 result->y_src = 0;
903 if ( mlt_properties_get( properties, "crop" ) )
904 {
905 mlt_geometry crop = mlt_properties_get_data( properties, "crop_geometry", NULL );
906 if ( !crop )
907 {
908 crop = mlt_geometry_init();
909 mlt_position in = mlt_transition_get_in( this );
910 mlt_position out = mlt_transition_get_out( this );
911 int length = out - in + 1;
912 mlt_geometry_parse( crop, mlt_properties_get( properties, "crop" ), length, result->sw, result->sh );
913 mlt_properties_set_data( properties, "crop_geometry", crop, 0, (mlt_destructor)mlt_geometry_close, NULL );
914 }
915 struct mlt_geometry_item_s crop_item;
916 mlt_geometry_fetch( crop, &crop_item, position );
917 result->x_src = crop_item.x;
918 result->y_src = crop_item.y;
919 }
920
921 return start;
922 }
923
924 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
925 {
926 // Create a frame to return
927 mlt_frame b_frame = mlt_frame_init( MLT_TRANSITION_SERVICE( this ) );
928
929 // Get the properties of the a frame
930 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
931
932 // Get the properties of the b frame
933 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
934
935 // Get the position
936 int position = position_calculate( this, frame_position );
937
938 // Get the unique id of the transition
939 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
940 char key[ 256 ];
941
942 // Destination image
943 uint8_t *dest = NULL;
944
945 // Get the image and dimensions
946 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
947 int width = mlt_properties_get_int( a_props, "width" );
948 int height = mlt_properties_get_int( a_props, "height" );
949 int format = mlt_properties_get_int( a_props, "format" );
950
951 // Pointers for copy operation
952 uint8_t *p;
953
954 // Coordinates
955 int w = 0;
956 int h = 0;
957 int x = 0;
958 int y = 0;
959
960 int ss = 0;
961 int ds = 0;
962
963 // Will need to know region to copy
964 struct geometry_s result;
965
966 // Calculate the region now
967 composite_calculate( this, &result, a_frame, position );
968
969 // Need to scale down to actual dimensions
970 x = rint( result.item.x * width / result.nw );
971 y = rint( result.item.y * height / result.nh );
972 w = rint( result.item.w * width / result.nw );
973 h = rint( result.item.h * height / result.nh );
974
975 if ( x % 2 )
976 {
977 x --;
978 w ++;
979 }
980
981 // Store the key
982 sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
983 mlt_properties_parse( a_props, key );
984 sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
985 mlt_properties_parse( a_props, key );
986
987 ds = w * 2;
988 ss = width * 2;
989
990 // Now we need to create a new destination image
991 dest = mlt_pool_alloc( w * h * 2 );
992
993 // Assign to the new frame
994 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
995 mlt_properties_set_int( b_props, "width", w );
996 mlt_properties_set_int( b_props, "height", h );
997 mlt_properties_set_int( b_props, "format", format );
998
999 if ( y < 0 )
1000 {
1001 dest += ( ds * -y );
1002 h += y;
1003 y = 0;
1004 }
1005
1006 if ( y + h > height )
1007 h -= ( y + h - height );
1008
1009 if ( x < 0 )
1010 {
1011 dest += -x * 2;
1012 w += x;
1013 x = 0;
1014 }
1015
1016 if ( w > 0 && h > 0 )
1017 {
1018 // Copy the region of the image
1019 p = image + y * ss + x * 2;
1020
1021 while ( h -- )
1022 {
1023 memcpy( dest, p, w * 2 );
1024 dest += ds;
1025 p += ss;
1026 }
1027 }
1028
1029 // Assign this position to the b frame
1030 mlt_frame_set_position( b_frame, frame_position );
1031 mlt_properties_set_int( b_props, "distort", 1 );
1032
1033 // Return the frame
1034 return b_frame;
1035 }
1036
1037 /** Get the image.
1038 */
1039
1040 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1041 {
1042 // Get the b frame from the stack
1043 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1044
1045 // Get the transition from the a frame
1046 mlt_transition this = mlt_frame_pop_service( a_frame );
1047
1048 // Get in and out
1049 double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
1050 int out = mlt_frame_pop_service_int( a_frame );
1051 int in = mlt_frame_pop_service_int( a_frame );
1052
1053 // Get the properties from the transition
1054 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1055
1056 // TODO: clean up always_active behaviour
1057 if ( mlt_properties_get_int( properties, "always_active" ) )
1058 {
1059 mlt_events_block( properties, properties );
1060 mlt_properties_set_int( properties, "in", in );
1061 mlt_properties_set_int( properties, "out", out );
1062 mlt_events_unblock( properties, properties );
1063 }
1064
1065 // This compositer is yuv422 only
1066 *format = mlt_image_yuv422;
1067
1068 if ( b_frame != NULL )
1069 {
1070 // Get the properties of the a frame
1071 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1072
1073 // Get the properties of the b frame
1074 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1075
1076 // Structures for geometry
1077 struct geometry_s result;
1078
1079 // Calculate the position
1080 double delta = delta_calculate( this, a_frame, position );
1081
1082 // Get the image from the b frame
1083 uint8_t *image_b = NULL;
1084 int width_b = *width;
1085 int height_b = *height;
1086
1087 // Vars for alphas
1088 uint8_t *alpha_a = NULL;
1089 uint8_t *alpha_b = NULL;
1090
1091 // Composites always need scaling... defaulting to lowest
1092 char *rescale = mlt_properties_get( a_props, "rescale.interp" );
1093 if ( rescale == NULL || !strcmp( rescale, "none" ) )
1094 rescale = "nearest";
1095 mlt_properties_set( a_props, "rescale.interp", rescale );
1096 mlt_properties_set( b_props, "rescale.interp", rescale );
1097
1098 // Do the calculation
1099 // NB: Locks needed here since the properties are being modified
1100 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1101 composite_calculate( this, &result, a_frame, position );
1102 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1103
1104 // Since we are the consumer of the b_frame, we must pass along these
1105 // consumer properties from the a_frame
1106 mlt_properties_set_int( b_props, "consumer_deinterlace", mlt_properties_get_int( a_props, "consumer_deinterlace" ) || mlt_properties_get_int( properties, "deinterlace" ) );
1107 mlt_properties_set( b_props, "consumer_deinterlace_method", mlt_properties_get( a_props, "consumer_deinterlace_method" ) );
1108 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1109
1110 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1111 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
1112 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1113 {
1114 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1115 if ( !mlt_frame_is_test_card( a_frame ) )
1116 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1117 return 0;
1118 }
1119
1120 if ( a_frame == b_frame )
1121 {
1122 double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1123 get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1124 alpha_b = mlt_frame_get_alpha_mask( b_frame );
1125 mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1126 }
1127
1128 // Get the image from the a frame
1129 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1130 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1131
1132 // Optimisation - no compositing required
1133 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1134 return 0;
1135
1136 // Need to keep the width/height of the a_frame on the b_frame for titling
1137 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1138 {
1139 mlt_properties_set_int( a_props, "dest_width", *width );
1140 mlt_properties_set_int( a_props, "dest_height", *height );
1141 mlt_properties_set_int( b_props, "dest_width", *width );
1142 mlt_properties_set_int( b_props, "dest_height", *height );
1143 }
1144 else
1145 {
1146 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1147 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1148 }
1149
1150 // Special case for titling...
1151 if ( mlt_properties_get_int( properties, "titles" ) )
1152 {
1153 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1154 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1155 width_b = mlt_properties_get_int( a_props, "dest_width" );
1156 height_b = mlt_properties_get_int( a_props, "dest_height" );
1157 }
1158
1159 if ( *image != image_b && ( image_b != NULL || get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) )
1160 {
1161 uint8_t *dest = *image;
1162 uint8_t *src = image_b;
1163 int progressive =
1164 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1165 mlt_properties_get_int( properties, "progressive" );
1166 int field;
1167
1168 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1169 uint16_t *luma_bitmap = get_luma( this, properties, width_b, height_b );
1170 char *operator = mlt_properties_get( properties, "operator" );
1171
1172 alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1173
1174 composite_line_fn line_fn = composite_line_yuv;
1175
1176 // Replacement and override
1177 if ( operator != NULL )
1178 {
1179 if ( !strcmp( operator, "or" ) )
1180 line_fn = composite_line_yuv_or;
1181 if ( !strcmp( operator, "and" ) )
1182 line_fn = composite_line_yuv_and;
1183 if ( !strcmp( operator, "xor" ) )
1184 line_fn = composite_line_yuv_xor;
1185 }
1186
1187 // Allow the user to completely obliterate the alpha channels from both frames
1188 if ( mlt_properties_get( properties, "alpha_a" ) )
1189 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1190
1191 if ( mlt_properties_get( properties, "alpha_b" ) )
1192 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1193
1194 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1195 {
1196 // Assume lower field (0) first
1197 double field_position = position + field * delta;
1198
1199 // Do the calculation if we need to
1200 // NB: Locks needed here since the properties are being modified
1201 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1202 composite_calculate( this, &result, a_frame, field_position );
1203 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1204
1205 if ( mlt_properties_get_int( properties, "titles" ) )
1206 {
1207 result.item.w = rint( *width * ( result.item.w / result.nw ) );
1208 result.nw = result.item.w;
1209 result.item.h = rint( *height * ( result.item.h / result.nh ) );
1210 result.nh = *height;
1211 result.sw = width_b;
1212 result.sh = height_b;
1213 }
1214
1215 // Enforce cropping
1216 if ( mlt_properties_get( properties, "crop" ) )
1217 {
1218 if ( result.x_src == 0 )
1219 width_b = width_b > result.item.w ? result.item.w : width_b;
1220 if ( result.y_src == 0 )
1221 height_b = height_b > result.item.h ? result.item.h : height_b;
1222 }
1223 else
1224 {
1225 // Otherwise, align
1226 alignment_calculate( &result );
1227 }
1228
1229 // Composite the b_frame on the a_frame
1230 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1231 }
1232 }
1233 }
1234 else
1235 {
1236 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1237 }
1238
1239 return 0;
1240 }
1241
1242 /** Composition transition processing.
1243 */
1244
1245 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1246 {
1247 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1248 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1249 {
1250 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1251 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1252 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1253 }
1254 else
1255 {
1256 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1257 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1258 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1259 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1260 }
1261
1262 mlt_frame_push_service( a_frame, this );
1263 mlt_frame_push_frame( a_frame, b_frame );
1264 mlt_frame_push_get_image( a_frame, transition_get_image );
1265 return a_frame;
1266 }
1267
1268 /** Constructor for the filter.
1269 */
1270
1271 mlt_transition transition_composite_init( mlt_profile profile, mlt_service_type type, const char *id, char *arg )
1272 {
1273 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1274 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1275 {
1276 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1277
1278 this->process = composite_process;
1279
1280 // Default starting motion and zoom
1281 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1282
1283 // Default factory
1284 mlt_properties_set( properties, "factory", "fezzik" );
1285
1286 // Use alignment (and hence alpha of b frame)
1287 mlt_properties_set_int( properties, "aligned", 1 );
1288
1289 // Inform apps and framework that this is a video only transition
1290 mlt_properties_set_int( properties, "_transition_type", 1 );
1291 }
1292 return this;
1293 }