+ Cleaned up compositing and alpha usage (all frames always have an alpha mask)
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37 struct mlt_geometry_item_s item;
38 int nw; // normalised width
39 int nh; // normalised height
40 int sw; // scaled width, not including consumer scale based upon w/nw
41 int sh; // scaled height, not including consumer scale based upon h/nh
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44 };
45
46 /** Parse the alignment properties into the geometry.
47 */
48
49 static int alignment_parse( char* align )
50 {
51 int ret = 0;
52
53 if ( align == NULL );
54 else if ( isdigit( align[ 0 ] ) )
55 ret = atoi( align );
56 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
57 ret = 1;
58 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
59 ret = 2;
60
61 return ret;
62 }
63
64 /** Calculate real geometry.
65 */
66
67 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
68 {
69 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
70 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
71 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
72 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
73 int length = mlt_geometry_get_length( geometry );
74
75 // Allow wrapping
76 if ( !repeat_off && position >= length && length != 0 )
77 {
78 int section = position / length;
79 position -= section * length;
80 if ( !mirror_off && section % 2 == 1 )
81 position = length - position;
82 }
83
84 // Fetch the key for the position
85 mlt_geometry_fetch( geometry, &output->item, position );
86 }
87
88 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
89 {
90 // Loop variable for property interrogation
91 int i = 0;
92
93 // Get the properties of the transition
94 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
95
96 // Create an empty geometries object
97 mlt_geometry geometry = mlt_geometry_init( );
98
99 // Get the in and out position
100 mlt_position in = mlt_transition_get_in( this );
101 mlt_position out = mlt_transition_get_out( this );
102 int length = out - in + 1;
103 double cycle = mlt_properties_get_double( properties, "cycle" );
104
105 // Get the new style geometry string
106 char *property = mlt_properties_get( properties, "geometry" );
107
108 // Allow a geometry repeat cycle
109 if ( cycle >= 1 )
110 length = cycle;
111 else if ( cycle > 0 )
112 length *= cycle;
113
114 // Parse the geometry if we have one
115 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
116
117 // Check if we're using the old style geometry
118 if ( property == NULL )
119 {
120 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
121 // practical use - while deprecated, it has been slightly extended too - keys can now
122 // be specified out of order, and can be blanked or NULL to simulate removal
123
124 // Structure to use for parsing and inserting
125 struct mlt_geometry_item_s item;
126
127 // Parse the start property
128 item.frame = 0;
129 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
130 mlt_geometry_insert( geometry, &item );
131
132 // Parse the keys in between
133 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
134 {
135 // Get the name of the property
136 char *name = mlt_properties_get_name( properties, i );
137
138 // Check that it's valid
139 if ( !strncmp( name, "key[", 4 ) )
140 {
141 // Get the value of the property
142 char *value = mlt_properties_get_value( properties, i );
143
144 // Determine the frame number
145 item.frame = atoi( name + 4 );
146
147 // Parse and add to the list
148 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
149 mlt_geometry_insert( geometry, &item );
150 else
151 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
152 }
153 }
154
155 // Parse the end
156 item.frame = -1;
157 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
158 mlt_geometry_insert( geometry, &item );
159 }
160
161 return geometry;
162 }
163
164 /** Adjust position according to scaled size and alignment properties.
165 */
166
167 static void alignment_calculate( struct geometry_s *geometry )
168 {
169 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
170 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
171 }
172
173 /** Calculate the position for this frame.
174 */
175
176 static int position_calculate( mlt_transition this, mlt_position position )
177 {
178 // Get the in and out position
179 mlt_position in = mlt_transition_get_in( this );
180
181 // Now do the calcs
182 return position - in;
183 }
184
185 /** Calculate the field delta for this frame - position between two frames.
186 */
187
188 static inline double delta_calculate( mlt_transition this, mlt_frame frame )
189 {
190 // Get the in and out position
191 mlt_position in = mlt_transition_get_in( this );
192 mlt_position out = mlt_transition_get_out( this );
193 double length = out - in + 1;
194
195 // Get the position of the frame
196 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
197 mlt_position position = mlt_properties_get_position( MLT_FRAME_PROPERTIES( frame ), name );
198
199 // Now do the calcs
200 double x = ( double )( position - in ) / length;
201 double y = ( double )( position + 1 - in ) / length;
202
203 return length * ( y - x ) / 2.0;
204 }
205
206 static int get_value( mlt_properties properties, char *preferred, char *fallback )
207 {
208 int value = mlt_properties_get_int( properties, preferred );
209 if ( value == 0 )
210 value = mlt_properties_get_int( properties, fallback );
211 return value;
212 }
213
214 /** A linear threshold determination function.
215 */
216
217 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
218 {
219 if ( a < edge1 )
220 return 0;
221
222 if ( a >= edge2 )
223 return 0x10000;
224
225 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
226 }
227
228 /** A smoother, non-linear threshold determination function.
229 */
230
231 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
232 {
233 if ( a < edge1 )
234 return 0;
235
236 if ( a >= edge2 )
237 return 0x10000;
238
239 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
240
241 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
242 }
243
244 /** Load the luma map from PGM stream.
245 */
246
247 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
248 {
249 uint8_t *data = NULL;
250 while (1)
251 {
252 char line[128];
253 char comment[128];
254 int i = 2;
255 int maxval;
256 int bpp;
257 uint16_t *p;
258
259 line[127] = '\0';
260
261 // get the magic code
262 if ( fgets( line, 127, f ) == NULL )
263 break;
264
265 // skip comments
266 while ( sscanf( line, " #%s", comment ) > 0 )
267 if ( fgets( line, 127, f ) == NULL )
268 break;
269
270 if ( line[0] != 'P' || line[1] != '5' )
271 break;
272
273 // skip white space and see if a new line must be fetched
274 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
275 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
276 break;
277
278 // skip comments
279 while ( sscanf( line, " #%s", comment ) > 0 )
280 if ( fgets( line, 127, f ) == NULL )
281 break;
282
283 // get the dimensions
284 if ( line[0] == 'P' )
285 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
286 else
287 i = sscanf( line, "%d %d %d", width, height, &maxval );
288
289 // get the height value, if not yet
290 if ( i < 2 )
291 {
292 if ( fgets( line, 127, f ) == NULL )
293 break;
294
295 // skip comments
296 while ( sscanf( line, " #%s", comment ) > 0 )
297 if ( fgets( line, 127, f ) == NULL )
298 break;
299
300 i = sscanf( line, "%d", height );
301 if ( i == 0 )
302 break;
303 else
304 i = 2;
305 }
306
307 // get the maximum gray value, if not yet
308 if ( i < 3 )
309 {
310 if ( fgets( line, 127, f ) == NULL )
311 break;
312
313 // skip comments
314 while ( sscanf( line, " #%s", comment ) > 0 )
315 if ( fgets( line, 127, f ) == NULL )
316 break;
317
318 i = sscanf( line, "%d", &maxval );
319 if ( i == 0 )
320 break;
321 }
322
323 // determine if this is one or two bytes per pixel
324 bpp = maxval > 255 ? 2 : 1;
325
326 // allocate temporary storage for the raw data
327 data = mlt_pool_alloc( *width * *height * bpp );
328 if ( data == NULL )
329 break;
330
331 // read the raw data
332 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
333 break;
334
335 // allocate the luma bitmap
336 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
337 if ( *map == NULL )
338 break;
339
340 // proces the raw data into the luma bitmap
341 for ( i = 0; i < *width * *height * bpp; i += bpp )
342 {
343 if ( bpp == 1 )
344 *p++ = data[ i ] << 8;
345 else
346 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
347 }
348
349 break;
350 }
351
352 if ( data != NULL )
353 mlt_pool_release( data );
354 }
355
356 /** Generate a luma map from any YUV image.
357 */
358
359 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
360 {
361 int i;
362
363 // allocate the luma bitmap
364 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
365 if ( *map == NULL )
366 return;
367
368 // proces the image data into the luma bitmap
369 for ( i = 0; i < width * height * 2; i += 2 )
370 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
371 }
372
373
374 /** Composite a source line over a destination line
375 */
376
377 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness )
378 {
379 register int j;
380 register int a;
381 register int mix;
382
383 for ( j = 0; j < width; j ++ )
384 {
385 a = *alpha_b ++;
386 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
387 mix = ( mix * a ) >> 8;
388 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
389 dest++;
390 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
391 dest++;
392 *alpha_a = mix | *alpha_a;
393 alpha_a ++;
394 }
395 }
396
397 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness )
398 {
399 register int j;
400 register int a;
401 register int mix;
402
403 for ( j = 0; j < width; j ++ )
404 {
405 a = *alpha_b ++ | *alpha_a;
406 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
407 mix = ( mix * a ) >> 8;
408 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
409 dest++;
410 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
411 dest++;
412 *alpha_a = mix | *alpha_a;
413 alpha_a ++;
414 }
415 }
416
417 /** Composite function.
418 */
419
420 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
421 {
422 int ret = 0;
423 int i;
424 int x_src = 0, y_src = 0;
425 int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 );
426 int step = ( field > -1 ) ? 2 : 1;
427 int bpp = 2;
428 int stride_src = width_src * bpp;
429 int stride_dest = width_dest * bpp;
430
431 // Adjust to consumer scale
432 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
433 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
434 int x_uneven = x & 1;
435
436 // optimization points - no work to do
437 if ( width_src <= 0 || height_src <= 0 )
438 return ret;
439
440 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
441 return ret;
442
443 // crop overlay off the left edge of frame
444 if ( x < 0 )
445 {
446 x_src = -x;
447 width_src -= x_src;
448 x = 0;
449 }
450
451 // crop overlay beyond right edge of frame
452 if ( x + width_src > width_dest )
453 width_src = width_dest - x;
454
455 // crop overlay off the top edge of the frame
456 if ( y < 0 )
457 {
458 y_src = -y;
459 height_src -= y_src;
460 y = 0;
461 }
462
463 // crop overlay below bottom edge of frame
464 if ( y + height_src > height_dest )
465 height_src = height_dest - y;
466
467 // offset pointer into overlay buffer based on cropping
468 p_src += x_src * bpp + y_src * stride_src;
469
470 // offset pointer into frame buffer based upon positive coordinates only!
471 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
472
473 // offset pointer into alpha channel based upon cropping
474 alpha_b += x_src + y_src * stride_src / bpp;
475 alpha_a += x + y * stride_dest / bpp;
476
477 // offset pointer into luma channel based upon cropping
478 if ( p_luma )
479 p_luma += x_src + y_src * stride_src / bpp;
480
481 // Assuming lower field first
482 // Special care is taken to make sure the b_frame is aligned to the correct field.
483 // field 0 = lower field and y should be odd (y is 0-based).
484 // field 1 = upper field and y should be even.
485 if ( ( field > -1 ) && ( y % 2 == field ) )
486 {
487 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
488 p_dest += stride_dest;
489 else
490 p_dest -= stride_dest;
491 }
492
493 // On the second field, use the other lines from b_frame
494 if ( field == 1 )
495 {
496 p_src += stride_src;
497 alpha_b += stride_src / bpp;
498 alpha_a += stride_dest / bpp;
499 height_src--;
500 }
501
502 stride_src *= step;
503 stride_dest *= step;
504 int alpha_b_stride = stride_src / bpp;
505 int alpha_a_stride = stride_dest / bpp;
506
507 // Make sure than x and w are even
508 if ( x_uneven )
509 {
510 p_src += 2;
511 width_src --;
512 alpha_a ++;
513 }
514
515 // now do the compositing only to cropped extents
516 for ( i = 0; i < height_src; i += step )
517 {
518 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, softness );
519
520 p_src += stride_src;
521 p_dest += stride_dest;
522 alpha_b += alpha_b_stride;
523 alpha_a += alpha_a_stride;
524 if ( p_luma )
525 p_luma += alpha_b_stride;
526 }
527
528 return ret;
529 }
530
531
532 /** Scale 16bit greyscale luma map using nearest neighbor.
533 */
534
535 static inline void
536 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
537 {
538 register int i, j;
539 register int x_step = ( src_width << 16 ) / dest_width;
540 register int y_step = ( src_height << 16 ) / dest_height;
541 register int x, y = 0;
542
543 for ( i = 0; i < dest_height; i++ )
544 {
545 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
546 x = 0;
547
548 for ( j = 0; j < dest_width; j++ )
549 {
550 *dest_buf++ = src[ x >> 16 ] ^ invert;
551 x += x_step;
552 }
553 y += y_step;
554 }
555 }
556
557 static uint16_t* get_luma( mlt_properties properties, int width, int height )
558 {
559 // The cached luma map information
560 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
561 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
562 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
563 int invert = mlt_properties_get_int( properties, "luma_invert" );
564
565 // If the filename property changed, reload the map
566 char *resource = mlt_properties_get( properties, "luma" );
567
568 char temp[ 512 ];
569
570 if ( luma_width == 0 || luma_height == 0 )
571 {
572 luma_width = width;
573 luma_height = height;
574 }
575
576 if ( resource != NULL && strchr( resource, '%' ) )
577 {
578 // TODO: Clean up quick and dirty compressed/existence check
579 FILE *test;
580 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
581 test = fopen( temp, "r" );
582 if ( test == NULL )
583 strcat( temp, ".png" );
584 else
585 fclose( test );
586 resource = temp;
587 }
588
589 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
590 {
591 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
592 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
593 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
594
595 // Load the original luma once
596 if ( orig_bitmap == NULL )
597 {
598 char *extension = strrchr( resource, '.' );
599
600 // See if it is a PGM
601 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
602 {
603 // Open PGM
604 FILE *f = fopen( resource, "r" );
605 if ( f != NULL )
606 {
607 // Load from PGM
608 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
609 fclose( f );
610
611 // Remember the original size for subsequent scaling
612 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
613 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
614 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
615 }
616 }
617 else
618 {
619 // Get the factory producer service
620 char *factory = mlt_properties_get( properties, "factory" );
621
622 // Create the producer
623 mlt_producer producer = mlt_factory_producer( factory, resource );
624
625 // If we have one
626 if ( producer != NULL )
627 {
628 // Get the producer properties
629 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
630
631 // Ensure that we loop
632 mlt_properties_set( producer_properties, "eof", "loop" );
633
634 // Now pass all producer. properties on the transition down
635 mlt_properties_pass( producer_properties, properties, "luma." );
636
637 // We will get the alpha frame from the producer
638 mlt_frame luma_frame = NULL;
639
640 // Get the luma frame
641 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
642 {
643 uint8_t *luma_image;
644 mlt_image_format luma_format = mlt_image_yuv422;
645
646 // Get image from the luma producer
647 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
648 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
649
650 // Generate the luma map
651 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
652 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
653
654 // Remember the original size for subsequent scaling
655 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
656 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
657 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
658
659 // Cleanup the luma frame
660 mlt_frame_close( luma_frame );
661 }
662
663 // Cleanup the luma producer
664 mlt_producer_close( producer );
665 }
666 }
667 }
668 // Scale luma map
669 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
670 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
671
672 // Remember the scaled luma size to prevent unnecessary scaling
673 mlt_properties_set_int( properties, "_luma.width", width );
674 mlt_properties_set_int( properties, "_luma.height", height );
675 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
676 }
677 return luma_bitmap;
678 }
679
680 /** Get the properly sized image from b_frame.
681 */
682
683 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
684 {
685 int ret = 0;
686 mlt_image_format format = mlt_image_yuv422;
687
688 // Get the properties objects
689 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
690 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
691
692 if ( mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
693 {
694 // Adjust b_frame pixel aspect
695 int normalised_width = geometry->item.w;
696 int normalised_height = geometry->item.h;
697 int real_width = get_value( b_props, "real_width", "width" );
698 int real_height = get_value( b_props, "real_height", "height" );
699 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
700 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
701 if ( input_ar == 0.0 ) input_ar = output_ar;
702 int scaled_width = input_ar / output_ar * real_width;
703 int scaled_height = real_height;
704
705 // Now ensure that our images fit in the normalised frame
706 if ( scaled_width > normalised_width )
707 {
708 scaled_height = scaled_height * normalised_width / scaled_width;
709 scaled_width = normalised_width;
710 }
711 if ( scaled_height > normalised_height )
712 {
713 scaled_width = scaled_width * normalised_height / scaled_height;
714 scaled_height = normalised_height;
715 }
716
717 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
718 // ????: Shouln't this be the default behaviour?
719 if ( mlt_properties_get_int( properties, "fill" ) )
720 {
721 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height < normalised_width )
722 {
723 scaled_width = scaled_width * normalised_height / scaled_height;
724 scaled_height = normalised_height;
725 }
726 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
727 {
728 scaled_height = scaled_height * normalised_width / scaled_width;
729 scaled_width = normalised_width;
730 }
731 }
732
733 // Save the new scaled dimensions
734 geometry->sw = scaled_width;
735 geometry->sh = scaled_height;
736 }
737 else
738 {
739 geometry->sw = geometry->item.w;
740 geometry->sh = geometry->item.h;
741 }
742
743 // We want to ensure that we bypass resize now...
744 mlt_properties_set_int( b_props, "distort", 1 );
745
746 // Take into consideration alignment for optimisation
747 if ( !mlt_properties_get_int( properties, "titles" ) )
748 alignment_calculate( geometry );
749
750 // Adjust to consumer scale
751 *width = geometry->sw * *width / geometry->nw;
752 *height = geometry->sh * *height / geometry->nh;
753
754 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
755
756 return ret && image != NULL;
757 }
758
759
760 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
761 {
762 // Get the properties from the transition
763 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
764
765 // Get the properties from the frame
766 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
767
768 // Structures for geometry
769 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
770
771 // Obtain the normalised width and height from the a_frame
772 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
773 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
774
775 // Now parse the geometries
776 if ( start == NULL )
777 {
778 // Parse the transitions properties
779 start = transition_parse_keys( this, normalised_width, normalised_height );
780
781 // Assign to properties to ensure we get destroyed
782 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
783 }
784 else
785 {
786 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
787 double cycle = mlt_properties_get_double( properties, "cycle" );
788 if ( cycle > 1 )
789 length = cycle;
790 else if ( cycle > 0 )
791 length *= cycle;
792 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
793 }
794
795 // Do the calculation
796 geometry_calculate( this, result, position );
797
798 // Assign normalised info
799 result->nw = normalised_width;
800 result->nh = normalised_height;
801
802 // Now parse the alignment
803 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
804 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
805
806 return start;
807 }
808
809 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
810 {
811 uint8_t *end = src + length;
812 while ( src < end )
813 {
814 *dest ++ = *src ++;
815 *dest ++ = *src ++;
816 }
817 }
818
819 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
820 {
821 // Create a frame to return
822 mlt_frame b_frame = mlt_frame_init( );
823
824 // Get the properties of the a frame
825 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
826
827 // Get the properties of the b frame
828 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
829
830 // Get the position
831 int position = position_calculate( this, frame_position );
832
833 // Destination image
834 uint8_t *dest = NULL;
835
836 // Get the image and dimensions
837 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
838 int width = mlt_properties_get_int( a_props, "width" );
839 int height = mlt_properties_get_int( a_props, "height" );
840
841 // Pointers for copy operation
842 uint8_t *p;
843
844 // Coordinates
845 int w = 0;
846 int h = 0;
847 int x = 0;
848 int y = 0;
849
850 int ss = 0;
851 int ds = 0;
852
853 // Will need to know region to copy
854 struct geometry_s result;
855
856 double delta = delta_calculate( this, a_frame );
857
858 // Calculate the region now
859 composite_calculate( this, &result, a_frame, position + delta / 2 );
860
861 // Need to scale down to actual dimensions
862 x = rint( 0.5 + result.item.x * width / result.nw );
863 y = rint( 0.5 + result.item.y * height / result.nh );
864 w = rint( 0.5 + result.item.w * width / result.nw );
865 h = rint( 0.5 + result.item.h * height / result.nh );
866
867 // Make sure that x and w are even
868 if ( x & 1 )
869 {
870 x --;
871 w += 2;
872 if ( w & 1 )
873 w --;
874 }
875 else if ( w & 1 )
876 {
877 w ++;
878 }
879
880 ds = w * 2;
881 ss = width * 2;
882
883 // Now we need to create a new destination image
884 dest = mlt_pool_alloc( w * h * 2 );
885
886 // Assign to the new frame
887 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
888 mlt_properties_set_int( b_props, "width", w );
889 mlt_properties_set_int( b_props, "height", h );
890
891 if ( y < 0 )
892 {
893 dest += ( ds * -y );
894 h += y;
895 y = 0;
896 }
897
898 if ( y + h > height )
899 h -= ( y + h - height );
900
901 if ( x < 0 )
902 {
903 dest += -x * 2;
904 w += x;
905 x = 0;
906 }
907
908 if ( w > 0 && h > 0 )
909 {
910 // Copy the region of the image
911 p = image + y * ss + x * 2;
912
913 while ( h -- )
914 {
915 inline_memcpy( dest, p, w * 2 );
916 dest += ds;
917 p += ss;
918 }
919 }
920
921 // Assign this position to the b frame
922 mlt_frame_set_position( b_frame, frame_position );
923 mlt_properties_set_int( b_props, "distort", 1 );
924
925 // Return the frame
926 return b_frame;
927 }
928
929 /** Get the image.
930 */
931
932 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
933 {
934 // Get the b frame from the stack
935 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
936
937 // Get the transition from the a frame
938 mlt_transition this = mlt_frame_pop_service( a_frame );
939
940 // Get in and out
941 int out = mlt_frame_pop_service_int( a_frame );
942 int in = mlt_frame_pop_service_int( a_frame );
943
944 // Get the properties from the transition
945 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
946
947 // TODO: clean up always_active behaviour
948 if ( mlt_properties_get_int( properties, "always_active" ) )
949 {
950 mlt_events_block( properties, properties );
951 mlt_properties_set_int( properties, "in", in );
952 mlt_properties_set_int( properties, "out", out );
953 mlt_events_unblock( properties, properties );
954 }
955
956 // This compositer is yuv422 only
957 *format = mlt_image_yuv422;
958
959 if ( b_frame != NULL )
960 {
961 // Get the properties of the a frame
962 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
963
964 // Get the properties of the b frame
965 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
966
967 // Structures for geometry
968 struct geometry_s result;
969
970 // Calculate the position
971 double position = mlt_properties_get_double( b_props, "relative_position" );
972 double delta = delta_calculate( this, a_frame );
973
974 // Get the image from the b frame
975 uint8_t *image_b = NULL;
976 int width_b = *width;
977 int height_b = *height;
978
979 // Do the calculation
980 composite_calculate( this, &result, a_frame, position );
981
982 // Since we are the consumer of the b_frame, we must pass along these
983 // consumer properties from the a_frame
984 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
985 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
986 mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) );
987 mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) );
988
989 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
990 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
991 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
992 {
993 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
994 if ( !mlt_frame_is_test_card( a_frame ) )
995 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
996 return 0;
997 }
998
999 // Get the image from the a frame
1000 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1001
1002 // Optimisation - no compositing required
1003 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1004 return 0;
1005
1006 // Need to keep the width/height of the a_frame on the b_frame for titling
1007 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1008 {
1009 mlt_properties_set_int( a_props, "dest_width", *width );
1010 mlt_properties_set_int( a_props, "dest_height", *height );
1011 mlt_properties_set_int( b_props, "dest_width", *width );
1012 mlt_properties_set_int( b_props, "dest_height", *height );
1013 }
1014 else
1015 {
1016 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1017 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1018 }
1019
1020 // Special case for titling...
1021 if ( mlt_properties_get_int( properties, "titles" ) )
1022 {
1023 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1024 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1025 width_b = mlt_properties_get_int( a_props, "dest_width" );
1026 height_b = mlt_properties_get_int( a_props, "dest_height" );
1027 }
1028
1029 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
1030 {
1031 uint8_t *dest = *image;
1032 uint8_t *src = image_b;
1033 uint8_t *alpha_b = mlt_frame_get_alpha_mask( b_frame );
1034 uint8_t *alpha_a = mlt_frame_get_alpha_mask( a_frame );
1035 int progressive =
1036 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1037 mlt_properties_get_int( properties, "progressive" );
1038 int field;
1039
1040 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1041 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1042 composite_line_fn line_fn = composite_line_yuv;
1043
1044 if ( mlt_properties_get_int( properties, "or" ) )
1045 line_fn = composite_line_yuv_or;
1046
1047 if ( mlt_properties_get( properties, "alpha_a" ) )
1048 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1049
1050 if ( mlt_properties_get( properties, "alpha_b" ) )
1051 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1052
1053 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1054 {
1055 // Assume lower field (0) first
1056 double field_position = position + field * delta;
1057
1058 // Do the calculation if we need to
1059 composite_calculate( this, &result, a_frame, field_position );
1060
1061 if ( mlt_properties_get_int( properties, "titles" ) )
1062 {
1063 result.item.w = *width * ( result.item.w / result.nw );
1064 result.nw = result.item.w;
1065 result.item.h = *height * ( result.item.h / result.nh );
1066 result.nh = *height;
1067 result.sw = width_b;
1068 result.sh = height_b;
1069 }
1070
1071 // Align
1072 alignment_calculate( &result );
1073
1074 // Composite the b_frame on the a_frame
1075 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1076 }
1077 }
1078 }
1079 else
1080 {
1081 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1082 }
1083
1084 return 0;
1085 }
1086
1087 /** Composition transition processing.
1088 */
1089
1090 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1091 {
1092 // Get a unique name to store the frame position
1093 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
1094
1095 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1096 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1097 {
1098 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1099 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1100
1101 // Assign the current position to the name
1102 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_frame_get_position( a_frame ) );
1103
1104 // Propogate the transition properties to the b frame
1105 mlt_properties_set_double( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1106 }
1107 else
1108 {
1109 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1110 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1111 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1112 mlt_properties_set_int( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1113
1114 // Assign the current position to the name
1115 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_properties_get_position( MLT_FRAME_PROPERTIES( b_frame ), "relative_position" ) );
1116 }
1117
1118 mlt_frame_push_service( a_frame, this );
1119 mlt_frame_push_frame( a_frame, b_frame );
1120 mlt_frame_push_get_image( a_frame, transition_get_image );
1121 return a_frame;
1122 }
1123
1124 /** Constructor for the filter.
1125 */
1126
1127 mlt_transition transition_composite_init( char *arg )
1128 {
1129 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1130 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1131 {
1132 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1133
1134 this->process = composite_process;
1135
1136 // Default starting motion and zoom
1137 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1138
1139 // Default factory
1140 mlt_properties_set( properties, "factory", "fezzik" );
1141
1142 // Inform apps and framework that this is a video only transition
1143 mlt_properties_set_int( properties, "_transition_type", 1 );
1144
1145 #ifdef USE_MMX
1146 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1147 #endif
1148 }
1149 return this;
1150 }