src/framework/mlt_consumer.c
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, uint8_t *full_alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 struct mlt_geometry_item_s item;
44 int nw; // normalised width
45 int nh; // normalised height
46 int sw; // scaled width, not including consumer scale based upon w/nw
47 int sh; // scaled height, not including consumer scale based upon h/nh
48 int halign; // horizontal alignment: 0=left, 1=center, 2=right
49 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
50 };
51
52 /** Parse the alignment properties into the geometry.
53 */
54
55 static int alignment_parse( char* align )
56 {
57 int ret = 0;
58
59 if ( align == NULL );
60 else if ( isdigit( align[ 0 ] ) )
61 ret = atoi( align );
62 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
63 ret = 1;
64 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
65 ret = 2;
66
67 return ret;
68 }
69
70 /** Calculate real geometry.
71 */
72
73 static void geometry_calculate( mlt_transition this, struct geometry_s *output, float position )
74 {
75 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
76 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
77 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
78 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
79 int length = mlt_geometry_get_length( geometry );
80
81 // Allow wrapping
82 if ( !repeat_off && position >= length && length != 0 )
83 {
84 int section = position / length;
85 position -= section * length;
86 if ( !mirror_off && section % 2 == 1 )
87 position = length - position;
88 }
89
90 // Fetch the key for the position
91 mlt_geometry_fetch( geometry, &output->item, position );
92 }
93
94 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
95 {
96 // Loop variable for property interrogation
97 int i = 0;
98
99 // Get the properties of the transition
100 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
101
102 // Create an empty geometries object
103 mlt_geometry geometry = mlt_geometry_init( );
104
105 // Get the in and out position
106 mlt_position in = mlt_transition_get_in( this );
107 mlt_position out = mlt_transition_get_out( this );
108 int length = out - in + 1;
109 double cycle = mlt_properties_get_double( properties, "cycle" );
110
111 // Get the new style geometry string
112 char *property = mlt_properties_get( properties, "geometry" );
113
114 // Allow a geometry repeat cycle
115 if ( cycle >= 1 )
116 length = cycle;
117 else if ( cycle > 0 )
118 length *= cycle;
119
120 // Parse the geometry if we have one
121 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
122
123 // Check if we're using the old style geometry
124 if ( property == NULL )
125 {
126 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
127 // practical use - while deprecated, it has been slightly extended too - keys can now
128 // be specified out of order, and can be blanked or NULL to simulate removal
129
130 // Structure to use for parsing and inserting
131 struct mlt_geometry_item_s item;
132
133 // Parse the start property
134 item.frame = 0;
135 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
136 mlt_geometry_insert( geometry, &item );
137
138 // Parse the keys in between
139 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
140 {
141 // Get the name of the property
142 char *name = mlt_properties_get_name( properties, i );
143
144 // Check that it's valid
145 if ( !strncmp( name, "key[", 4 ) )
146 {
147 // Get the value of the property
148 char *value = mlt_properties_get_value( properties, i );
149
150 // Determine the frame number
151 item.frame = atoi( name + 4 );
152
153 // Parse and add to the list
154 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
155 mlt_geometry_insert( geometry, &item );
156 else
157 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
158 }
159 }
160
161 // Parse the end
162 item.frame = -1;
163 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
164 mlt_geometry_insert( geometry, &item );
165 }
166
167 return geometry;
168 }
169
170 /** Adjust position according to scaled size and alignment properties.
171 */
172
173 static void alignment_calculate( struct geometry_s *geometry )
174 {
175 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
176 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
177 }
178
179 /** Calculate the position for this frame.
180 */
181
182 static int position_calculate( mlt_transition this, mlt_position position )
183 {
184 // Get the in and out position
185 mlt_position in = mlt_transition_get_in( this );
186
187 // Now do the calcs
188 return position - in;
189 }
190
191 /** Calculate the field delta for this frame - position between two frames.
192 */
193
194 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
195 {
196 // Get the in and out position
197 mlt_position in = mlt_transition_get_in( this );
198 mlt_position out = mlt_transition_get_out( this );
199 float length = out - in + 1;
200
201 // Get the position of the frame
202 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
203 mlt_position position = mlt_properties_get_position( MLT_FRAME_PROPERTIES( frame ), name );
204
205 // Now do the calcs
206 float x = ( float )( position - in ) / length;
207 float y = ( float )( position + 1 - in ) / length;
208
209 return length * ( y - x ) / 2.0;
210 }
211
212 static int get_value( mlt_properties properties, char *preferred, char *fallback )
213 {
214 int value = mlt_properties_get_int( properties, preferred );
215 if ( value == 0 )
216 value = mlt_properties_get_int( properties, fallback );
217 return value;
218 }
219
220 /** A linear threshold determination function.
221 */
222
223 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
224 {
225 if ( a < edge1 )
226 return 0;
227
228 if ( a >= edge2 )
229 return 0x10000;
230
231 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
232 }
233
234 /** A smoother, non-linear threshold determination function.
235 */
236
237 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
238 {
239 if ( a < edge1 )
240 return 0;
241
242 if ( a >= edge2 )
243 return 0x10000;
244
245 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
246
247 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
248 }
249
250 /** Load the luma map from PGM stream.
251 */
252
253 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
254 {
255 uint8_t *data = NULL;
256 while (1)
257 {
258 char line[128];
259 char comment[128];
260 int i = 2;
261 int maxval;
262 int bpp;
263 uint16_t *p;
264
265 line[127] = '\0';
266
267 // get the magic code
268 if ( fgets( line, 127, f ) == NULL )
269 break;
270
271 // skip comments
272 while ( sscanf( line, " #%s", comment ) > 0 )
273 if ( fgets( line, 127, f ) == NULL )
274 break;
275
276 if ( line[0] != 'P' || line[1] != '5' )
277 break;
278
279 // skip white space and see if a new line must be fetched
280 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
281 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
282 break;
283
284 // skip comments
285 while ( sscanf( line, " #%s", comment ) > 0 )
286 if ( fgets( line, 127, f ) == NULL )
287 break;
288
289 // get the dimensions
290 if ( line[0] == 'P' )
291 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
292 else
293 i = sscanf( line, "%d %d %d", width, height, &maxval );
294
295 // get the height value, if not yet
296 if ( i < 2 )
297 {
298 if ( fgets( line, 127, f ) == NULL )
299 break;
300
301 // skip comments
302 while ( sscanf( line, " #%s", comment ) > 0 )
303 if ( fgets( line, 127, f ) == NULL )
304 break;
305
306 i = sscanf( line, "%d", height );
307 if ( i == 0 )
308 break;
309 else
310 i = 2;
311 }
312
313 // get the maximum gray value, if not yet
314 if ( i < 3 )
315 {
316 if ( fgets( line, 127, f ) == NULL )
317 break;
318
319 // skip comments
320 while ( sscanf( line, " #%s", comment ) > 0 )
321 if ( fgets( line, 127, f ) == NULL )
322 break;
323
324 i = sscanf( line, "%d", &maxval );
325 if ( i == 0 )
326 break;
327 }
328
329 // determine if this is one or two bytes per pixel
330 bpp = maxval > 255 ? 2 : 1;
331
332 // allocate temporary storage for the raw data
333 data = mlt_pool_alloc( *width * *height * bpp );
334 if ( data == NULL )
335 break;
336
337 // read the raw data
338 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
339 break;
340
341 // allocate the luma bitmap
342 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
343 if ( *map == NULL )
344 break;
345
346 // proces the raw data into the luma bitmap
347 for ( i = 0; i < *width * *height * bpp; i += bpp )
348 {
349 if ( bpp == 1 )
350 *p++ = data[ i ] << 8;
351 else
352 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
353 }
354
355 break;
356 }
357
358 if ( data != NULL )
359 mlt_pool_release( data );
360 }
361
362 /** Generate a luma map from any YUV image.
363 */
364
365 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
366 {
367 int i;
368
369 // allocate the luma bitmap
370 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
371 if ( *map == NULL )
372 return;
373
374 // proces the image data into the luma bitmap
375 for ( i = 0; i < width * height * 2; i += 2 )
376 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
377 }
378
379
380 /** Composite a source line over a destination line
381 */
382
383 static inline
384 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, uint8_t *full_alpha, int weight, uint16_t *luma, int softness )
385 {
386 register int j;
387 int a, mix;
388
389 for ( j = 0; j < width_src; j ++ )
390 {
391 a = ( alpha == NULL ) ? 255 : *alpha ++;
392 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
393 mix = ( mix * a ) >> 8;
394 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
395 dest++;
396 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
397 dest++;
398 if ( full_alpha && *full_alpha == 0 ) { *full_alpha = a; }
399 full_alpha ++;
400 }
401 }
402
403 /** Composite function.
404 */
405
406 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, uint8_t *full_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
407 {
408 int ret = 0;
409 int i;
410 int x_src = 0, y_src = 0;
411 int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 );
412 int step = ( field > -1 ) ? 2 : 1;
413 int bpp = 2;
414 int stride_src = width_src * bpp;
415 int stride_dest = width_dest * bpp;
416
417 // Adjust to consumer scale
418 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
419 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
420 int x_uneven = x & 1;
421
422 // optimization points - no work to do
423 if ( width_src <= 0 || height_src <= 0 )
424 return ret;
425
426 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
427 return ret;
428
429 // crop overlay off the left edge of frame
430 if ( x < 0 )
431 {
432 x_src = -x;
433 width_src -= x_src;
434 x = 0;
435 }
436
437 // crop overlay beyond right edge of frame
438 if ( x + width_src > width_dest )
439 width_src = width_dest - x;
440
441 // crop overlay off the top edge of the frame
442 if ( y < 0 )
443 {
444 y_src = -y;
445 height_src -= y_src;
446 y = 0;
447 }
448
449 // crop overlay below bottom edge of frame
450 if ( y + height_src > height_dest )
451 height_src = height_dest - y;
452
453 // offset pointer into overlay buffer based on cropping
454 p_src += x_src * bpp + y_src * stride_src;
455
456 // offset pointer into frame buffer based upon positive coordinates only!
457 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
458
459 // offset pointer into alpha channel based upon cropping
460 if ( p_alpha )
461 p_alpha += x_src + y_src * stride_src / bpp;
462
463 if ( full_alpha )
464 full_alpha += x + y * stride_dest / bpp;
465
466 // offset pointer into luma channel based upon cropping
467 if ( p_luma )
468 p_luma += x_src + y_src * stride_src / bpp;
469
470 // Assuming lower field first
471 // Special care is taken to make sure the b_frame is aligned to the correct field.
472 // field 0 = lower field and y should be odd (y is 0-based).
473 // field 1 = upper field and y should be even.
474 if ( ( field > -1 ) && ( y % 2 == field ) )
475 {
476 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
477 p_dest += stride_dest;
478 else
479 p_dest -= stride_dest;
480 }
481
482 // On the second field, use the other lines from b_frame
483 if ( field == 1 )
484 {
485 p_src += stride_src;
486 if ( p_alpha )
487 p_alpha += stride_src / bpp;
488 if ( full_alpha )
489 full_alpha += stride_dest / bpp;
490 height_src--;
491 }
492
493 stride_src *= step;
494 stride_dest *= step;
495 int alpha_stride = stride_src / bpp;
496 int full_alpha_stride = stride_dest / bpp;
497
498 // Make sure than x and w are even
499 if ( x_uneven )
500 {
501 p_src += 2;
502 width_src --;
503 full_alpha ++;
504 }
505
506 // now do the compositing only to cropped extents
507 if ( line_fn != NULL )
508 {
509 for ( i = 0; i < height_src; i += step )
510 {
511 line_fn( p_dest, p_src, width_src, p_alpha, full_alpha, weight, p_luma, softness );
512
513 p_src += stride_src;
514 p_dest += stride_dest;
515 if ( p_alpha )
516 p_alpha += alpha_stride;
517 if ( full_alpha )
518 full_alpha += full_alpha_stride;
519 if ( p_luma )
520 p_luma += alpha_stride;
521 }
522 }
523 else
524 {
525 for ( i = 0; i < height_src; i += step )
526 {
527 composite_line_yuv( p_dest, p_src, width_src, p_alpha, full_alpha, weight, p_luma, softness );
528
529 p_src += stride_src;
530 p_dest += stride_dest;
531 if ( p_alpha )
532 p_alpha += alpha_stride;
533 if ( full_alpha )
534 full_alpha += full_alpha_stride;
535 if ( p_luma )
536 p_luma += alpha_stride;
537 }
538 }
539
540 return ret;
541 }
542
543
544 /** Scale 16bit greyscale luma map using nearest neighbor.
545 */
546
547 static inline void
548 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
549 {
550 register int i, j;
551 register int x_step = ( src_width << 16 ) / dest_width;
552 register int y_step = ( src_height << 16 ) / dest_height;
553 register int x, y = 0;
554
555 for ( i = 0; i < dest_height; i++ )
556 {
557 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
558 x = 0;
559
560 for ( j = 0; j < dest_width; j++ )
561 {
562 *dest_buf++ = src[ x >> 16 ] ^ invert;
563 x += x_step;
564 }
565 y += y_step;
566 }
567 }
568
569 static uint16_t* get_luma( mlt_properties properties, int width, int height )
570 {
571 // The cached luma map information
572 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
573 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
574 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
575 int invert = mlt_properties_get_int( properties, "luma_invert" );
576
577 // If the filename property changed, reload the map
578 char *resource = mlt_properties_get( properties, "luma" );
579
580 char temp[ 512 ];
581
582 if ( luma_width == 0 || luma_height == 0 )
583 {
584 luma_width = width;
585 luma_height = height;
586 }
587
588 if ( resource != NULL && strchr( resource, '%' ) )
589 {
590 // TODO: Clean up quick and dirty compressed/existence check
591 FILE *test;
592 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
593 test = fopen( temp, "r" );
594 if ( test == NULL )
595 strcat( temp, ".png" );
596 else
597 fclose( test );
598 resource = temp;
599 }
600
601 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
602 {
603 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
604 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
605 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
606
607 // Load the original luma once
608 if ( orig_bitmap == NULL )
609 {
610 char *extension = strrchr( resource, '.' );
611
612 // See if it is a PGM
613 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
614 {
615 // Open PGM
616 FILE *f = fopen( resource, "r" );
617 if ( f != NULL )
618 {
619 // Load from PGM
620 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
621 fclose( f );
622
623 // Remember the original size for subsequent scaling
624 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
625 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
626 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
627 }
628 }
629 else
630 {
631 // Get the factory producer service
632 char *factory = mlt_properties_get( properties, "factory" );
633
634 // Create the producer
635 mlt_producer producer = mlt_factory_producer( factory, resource );
636
637 // If we have one
638 if ( producer != NULL )
639 {
640 // Get the producer properties
641 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
642
643 // Ensure that we loop
644 mlt_properties_set( producer_properties, "eof", "loop" );
645
646 // Now pass all producer. properties on the transition down
647 mlt_properties_pass( producer_properties, properties, "luma." );
648
649 // We will get the alpha frame from the producer
650 mlt_frame luma_frame = NULL;
651
652 // Get the luma frame
653 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
654 {
655 uint8_t *luma_image;
656 mlt_image_format luma_format = mlt_image_yuv422;
657
658 // Get image from the luma producer
659 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
660 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
661
662 // Generate the luma map
663 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
664 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
665
666 // Remember the original size for subsequent scaling
667 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
668 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
669 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
670
671 // Cleanup the luma frame
672 mlt_frame_close( luma_frame );
673 }
674
675 // Cleanup the luma producer
676 mlt_producer_close( producer );
677 }
678 }
679 }
680 // Scale luma map
681 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
682 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
683
684 // Remember the scaled luma size to prevent unnecessary scaling
685 mlt_properties_set_int( properties, "_luma.width", width );
686 mlt_properties_set_int( properties, "_luma.height", height );
687 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
688 }
689 return luma_bitmap;
690 }
691
692 /** Get the properly sized image from b_frame.
693 */
694
695 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
696 {
697 int ret = 0;
698 mlt_image_format format = mlt_image_yuv422;
699
700 // Get the properties objects
701 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
702 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
703
704 if ( mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
705 {
706 // Adjust b_frame pixel aspect
707 int normalised_width = geometry->item.w;
708 int normalised_height = geometry->item.h;
709 int real_width = get_value( b_props, "real_width", "width" );
710 int real_height = get_value( b_props, "real_height", "height" );
711 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
712 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
713 if ( input_ar == 0.0 ) input_ar = output_ar;
714 int scaled_width = input_ar / output_ar * real_width;
715 int scaled_height = real_height;
716
717 // Now ensure that our images fit in the normalised frame
718 if ( scaled_width > normalised_width )
719 {
720 scaled_height = scaled_height * normalised_width / scaled_width;
721 scaled_width = normalised_width;
722 }
723 if ( scaled_height > normalised_height )
724 {
725 scaled_width = scaled_width * normalised_height / scaled_height;
726 scaled_height = normalised_height;
727 }
728
729 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
730 // ????: Shouln't this be the default behaviour?
731 if ( mlt_properties_get_int( properties, "fill" ) )
732 {
733 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height < normalised_width )
734 {
735 scaled_width = scaled_width * normalised_height / scaled_height;
736 scaled_height = normalised_height;
737 }
738 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
739 {
740 scaled_height = scaled_height * normalised_width / scaled_width;
741 scaled_width = normalised_width;
742 }
743 }
744
745 // Save the new scaled dimensions
746 geometry->sw = scaled_width;
747 geometry->sh = scaled_height;
748 }
749 else
750 {
751 geometry->sw = geometry->item.w;
752 geometry->sh = geometry->item.h;
753 }
754
755 // We want to ensure that we bypass resize now...
756 mlt_properties_set_int( b_props, "distort", 1 );
757
758 // Take into consideration alignment for optimisation
759 if ( !mlt_properties_get_int( properties, "titles" ) )
760 alignment_calculate( geometry );
761
762 // Adjust to consumer scale
763 *width = geometry->sw * *width / geometry->nw;
764 *height = geometry->sh * *height / geometry->nh;
765
766 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
767
768 return ret && image != NULL;
769 }
770
771
772 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, float position )
773 {
774 // Get the properties from the transition
775 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
776
777 // Get the properties from the frame
778 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
779
780 // Structures for geometry
781 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
782
783 // Obtain the normalised width and height from the a_frame
784 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
785 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
786
787 // Now parse the geometries
788 if ( start == NULL )
789 {
790 // Parse the transitions properties
791 start = transition_parse_keys( this, normalised_width, normalised_height );
792
793 // Assign to properties to ensure we get destroyed
794 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
795 }
796 else
797 {
798 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
799 double cycle = mlt_properties_get_double( properties, "cycle" );
800 if ( cycle > 1 )
801 length = cycle;
802 else if ( cycle > 0 )
803 length *= cycle;
804 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
805 }
806
807 // Do the calculation
808 geometry_calculate( this, result, position );
809
810 // Assign normalised info
811 result->nw = normalised_width;
812 result->nh = normalised_height;
813
814 // Now parse the alignment
815 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
816 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
817
818 return start;
819 }
820
821 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
822 {
823 uint8_t *end = src + length;
824 while ( src < end )
825 {
826 *dest ++ = *src ++;
827 *dest ++ = *src ++;
828 }
829 }
830
831 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
832 {
833 // Create a frame to return
834 mlt_frame b_frame = mlt_frame_init( );
835
836 // Get the properties of the a frame
837 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
838
839 // Get the properties of the b frame
840 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
841
842 // Get the position
843 int position = position_calculate( this, frame_position );
844
845 // Destination image
846 uint8_t *dest = NULL;
847
848 // Get the image and dimensions
849 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
850 int width = mlt_properties_get_int( a_props, "width" );
851 int height = mlt_properties_get_int( a_props, "height" );
852
853 // Pointers for copy operation
854 uint8_t *p;
855
856 // Coordinates
857 int w = 0;
858 int h = 0;
859 int x = 0;
860 int y = 0;
861
862 int ss = 0;
863 int ds = 0;
864
865 // Will need to know region to copy
866 struct geometry_s result;
867
868 float delta = delta_calculate( this, a_frame );
869
870 // Calculate the region now
871 composite_calculate( this, &result, a_frame, position + delta / 2 );
872
873 // Need to scale down to actual dimensions
874 x = rint( 0.5 + result.item.x * width / result.nw );
875 y = rint( 0.5 + result.item.y * height / result.nh );
876 w = rint( 0.5 + result.item.w * width / result.nw );
877 h = rint( 0.5 + result.item.h * height / result.nh );
878
879 // Make sure that x and w are even
880 if ( x & 1 )
881 {
882 x --;
883 w += 2;
884 if ( w & 1 )
885 w --;
886 }
887 else if ( w & 1 )
888 {
889 w ++;
890 }
891
892 ds = w * 2;
893 ss = width * 2;
894
895 // Now we need to create a new destination image
896 dest = mlt_pool_alloc( w * h * 2 );
897
898 // Assign to the new frame
899 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
900 mlt_properties_set_int( b_props, "width", w );
901 mlt_properties_set_int( b_props, "height", h );
902
903 if ( y < 0 )
904 {
905 dest += ( ds * -y );
906 h += y;
907 y = 0;
908 }
909
910 if ( y + h > height )
911 h -= ( y + h - height );
912
913 if ( x < 0 )
914 {
915 dest += -x * 2;
916 w += x;
917 x = 0;
918 }
919
920 if ( w > 0 && h > 0 )
921 {
922 // Copy the region of the image
923 p = image + y * ss + x * 2;
924
925 while ( h -- )
926 {
927 inline_memcpy( dest, p, w * 2 );
928 dest += ds;
929 p += ss;
930 }
931 }
932
933 // Assign this position to the b frame
934 mlt_frame_set_position( b_frame, frame_position );
935 mlt_properties_set_int( b_props, "distort", 1 );
936
937 // Return the frame
938 return b_frame;
939 }
940
941 /** Get the image.
942 */
943
944 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
945 {
946 // Get the b frame from the stack
947 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
948
949 // Get the transition from the a frame
950 mlt_transition this = mlt_frame_pop_service( a_frame );
951
952 // Get in and out
953 int out = mlt_frame_pop_service_int( a_frame );
954 int in = mlt_frame_pop_service_int( a_frame );
955
956 // Get the properties from the transition
957 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
958
959 // TODO: clean up always_active behaviour
960 if ( mlt_properties_get_int( properties, "always_active" ) )
961 {
962 mlt_events_block( properties, properties );
963 mlt_properties_set_int( properties, "in", in );
964 mlt_properties_set_int( properties, "out", out );
965 mlt_events_unblock( properties, properties );
966 }
967
968 // This compositer is yuv422 only
969 *format = mlt_image_yuv422;
970
971 if ( b_frame != NULL )
972 {
973 // Get the properties of the a frame
974 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
975
976 // Get the properties of the b frame
977 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
978
979 // Structures for geometry
980 struct geometry_s result;
981
982 // Calculate the position
983 float position = mlt_properties_get_double( b_props, "relative_position" );
984 float delta = delta_calculate( this, a_frame );
985
986 // Get the image from the b frame
987 uint8_t *image_b = NULL;
988 int width_b = *width;
989 int height_b = *height;
990
991 // Do the calculation
992 composite_calculate( this, &result, a_frame, position );
993
994 // Since we are the consumer of the b_frame, we must pass along these
995 // consumer properties from the a_frame
996 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
997 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
998 mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) );
999 mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) );
1000
1001 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1002 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
1003 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1004 {
1005 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1006 if ( !mlt_frame_is_test_card( a_frame ) )
1007 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1008 return 0;
1009 }
1010
1011 // Get the image from the a frame
1012 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1013
1014 // Optimisation - no compositing required
1015 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1016 return 0;
1017
1018 // Need to keep the width/height of the a_frame on the b_frame for titling
1019 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1020 {
1021 mlt_properties_set_int( a_props, "dest_width", *width );
1022 mlt_properties_set_int( a_props, "dest_height", *height );
1023 mlt_properties_set_int( b_props, "dest_width", *width );
1024 mlt_properties_set_int( b_props, "dest_height", *height );
1025 }
1026 else
1027 {
1028 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1029 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1030 }
1031
1032 // Special case for titling...
1033 if ( mlt_properties_get_int( properties, "titles" ) )
1034 {
1035 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1036 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1037 width_b = mlt_properties_get_int( a_props, "dest_width" );
1038 height_b = mlt_properties_get_int( a_props, "dest_height" );
1039 }
1040
1041 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
1042 {
1043 uint8_t *dest = *image;
1044 uint8_t *src = image_b;
1045 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
1046 uint8_t *full_alpha = mlt_frame_get_alpha_mask( a_frame );
1047 int progressive =
1048 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1049 mlt_properties_get_int( properties, "progressive" );
1050 int field;
1051
1052 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1053 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1054 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
1055 composite_line_fn line_fn = NULL;
1056
1057 if ( full_alpha == NULL )
1058 {
1059 full_alpha = mlt_pool_alloc( *width * *height );
1060 memset( full_alpha, 255, *width * *height );
1061 a_frame->get_alpha_mask = NULL;
1062 mlt_properties_set_data( a_props, "alpha", full_alpha, 0, mlt_pool_release, NULL );
1063 }
1064
1065 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1066 {
1067 // Assume lower field (0) first
1068 float field_position = position + field * delta;
1069
1070 // Do the calculation if we need to
1071 composite_calculate( this, &result, a_frame, field_position );
1072
1073 if ( mlt_properties_get_int( properties, "titles" ) )
1074 {
1075 result.item.w = *width * ( result.item.w / result.nw );
1076 result.nw = result.item.w;
1077 result.item.h = *height * ( result.item.h / result.nh );
1078 result.nh = *height;
1079 result.sw = width_b;
1080 result.sh = height_b;
1081 }
1082
1083 // Align
1084 alignment_calculate( &result );
1085
1086 // Composite the b_frame on the a_frame
1087 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, full_alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1088 }
1089 }
1090 }
1091 else
1092 {
1093 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1094 }
1095
1096 return 0;
1097 }
1098
1099 /** Composition transition processing.
1100 */
1101
1102 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1103 {
1104 // Get a unique name to store the frame position
1105 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
1106
1107 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1108 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1109 {
1110 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1111 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1112
1113 // Assign the current position to the name
1114 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_frame_get_position( a_frame ) );
1115
1116 // Propogate the transition properties to the b frame
1117 mlt_properties_set_double( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1118 }
1119 else
1120 {
1121 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1122 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1123 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1124 mlt_properties_set_int( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1125
1126 // Assign the current position to the name
1127 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_properties_get_position( MLT_FRAME_PROPERTIES( b_frame ), "relative_position" ) );
1128 }
1129
1130 mlt_frame_push_service( a_frame, this );
1131 mlt_frame_push_frame( a_frame, b_frame );
1132 mlt_frame_push_get_image( a_frame, transition_get_image );
1133 return a_frame;
1134 }
1135
1136 /** Constructor for the filter.
1137 */
1138
1139 mlt_transition transition_composite_init( char *arg )
1140 {
1141 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1142 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1143 {
1144 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1145
1146 this->process = composite_process;
1147
1148 // Default starting motion and zoom
1149 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1150
1151 // Default factory
1152 mlt_properties_set( properties, "factory", "fezzik" );
1153
1154 // Inform apps and framework that this is a video only transition
1155 mlt_properties_set_int( properties, "_transition_type", 1 );
1156
1157 #ifdef USE_MMX
1158 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1159 #endif
1160 }
1161 return this;
1162 }