Luma generation and use
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 struct mlt_geometry_item_s item;
44 int nw; // normalised width
45 int nh; // normalised height
46 int sw; // scaled width, not including consumer scale based upon w/nw
47 int sh; // scaled height, not including consumer scale based upon h/nh
48 int halign; // horizontal alignment: 0=left, 1=center, 2=right
49 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
50 };
51
52 /** Parse the alignment properties into the geometry.
53 */
54
55 static int alignment_parse( char* align )
56 {
57 int ret = 0;
58
59 if ( align == NULL );
60 else if ( isdigit( align[ 0 ] ) )
61 ret = atoi( align );
62 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
63 ret = 1;
64 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
65 ret = 2;
66
67 return ret;
68 }
69
70 /** Calculate real geometry.
71 */
72
73 static void geometry_calculate( mlt_transition this, struct geometry_s *output, float position )
74 {
75 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
76 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
77 int length = mlt_geometry_get_length( geometry );
78
79 // Allow wrapping
80 if ( position >= length && length != 0 )
81 {
82 int section = position / length;
83 position -= section * length;
84 if ( section % 2 == 1 )
85 position = length - position;
86 }
87
88 // Fetch the key for the position
89 mlt_geometry_fetch( geometry, &output->item, position );
90 }
91
92 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
93 {
94 // Loop variable for property interrogation
95 int i = 0;
96
97 // Get the properties of the transition
98 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
99
100 // Create an empty geometries object
101 mlt_geometry geometry = mlt_geometry_init( );
102
103 // Get the in and out position
104 mlt_position in = mlt_transition_get_in( this );
105 mlt_position out = mlt_transition_get_out( this );
106
107 // Get the new style geometry string
108 char *property = mlt_properties_get( properties, "geometry" );
109
110 // Parse the geometry if we have one
111 mlt_geometry_parse( geometry, property, out - in + 1, normalised_width, normalised_height );
112
113 // Check if we're using the old style geometry
114 if ( property == NULL )
115 {
116 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
117 // practical use - while deprecated, it has been slightly extended too - keys can now
118 // be specified out of order, and can be blanked or NULL to simulate removal
119
120 // Structure to use for parsing and inserting
121 struct mlt_geometry_item_s item;
122
123 // Parse the start property
124 item.frame = 0;
125 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
126 mlt_geometry_insert( geometry, &item );
127
128 // Parse the keys in between
129 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
130 {
131 // Get the name of the property
132 char *name = mlt_properties_get_name( properties, i );
133
134 // Check that it's valid
135 if ( !strncmp( name, "key[", 4 ) )
136 {
137 // Get the value of the property
138 char *value = mlt_properties_get_value( properties, i );
139
140 // Determine the frame number
141 item.frame = atoi( name + 4 );
142
143 // Parse and add to the list
144 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
145 mlt_geometry_insert( geometry, &item );
146 else
147 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
148 }
149 }
150
151 // Parse the end
152 item.frame = -1;
153 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
154 mlt_geometry_insert( geometry, &item );
155 }
156
157 return geometry;
158 }
159
160 /** Adjust position according to scaled size and alignment properties.
161 */
162
163 static void alignment_calculate( struct geometry_s *geometry )
164 {
165 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
166 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
167 }
168
169 /** Calculate the position for this frame.
170 */
171
172 static int position_calculate( mlt_transition this, mlt_position position )
173 {
174 // Get the in and out position
175 mlt_position in = mlt_transition_get_in( this );
176
177 // Now do the calcs
178 return position - in;
179 }
180
181 /** Calculate the field delta for this frame - position between two frames.
182 */
183
184 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
185 {
186 // Get the in and out position
187 mlt_position in = mlt_transition_get_in( this );
188 mlt_position out = mlt_transition_get_out( this );
189 float length = out - in + 1;
190
191 // Get the position of the frame
192 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
193 mlt_position position = mlt_properties_get_position( MLT_FRAME_PROPERTIES( frame ), name );
194
195 // Now do the calcs
196 float x = ( float )( position - in ) / length;
197 float y = ( float )( position + 1 - in ) / length;
198
199 return length * ( y - x ) / 2.0;
200 }
201
202 static int get_value( mlt_properties properties, char *preferred, char *fallback )
203 {
204 int value = mlt_properties_get_int( properties, preferred );
205 if ( value == 0 )
206 value = mlt_properties_get_int( properties, fallback );
207 return value;
208 }
209
210 /** A linear threshold determination function.
211 */
212
213 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
214 {
215 if ( a < edge1 )
216 return 0;
217
218 if ( a >= edge2 )
219 return 0x10000;
220
221 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
222 }
223
224 /** A smoother, non-linear threshold determination function.
225 */
226
227 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
228 {
229 if ( a < edge1 )
230 return 0;
231
232 if ( a >= edge2 )
233 return 0x10000;
234
235 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
236
237 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
238 }
239
240 /** Load the luma map from PGM stream.
241 */
242
243 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
244 {
245 uint8_t *data = NULL;
246 while (1)
247 {
248 char line[128];
249 char comment[128];
250 int i = 2;
251 int maxval;
252 int bpp;
253 uint16_t *p;
254
255 line[127] = '\0';
256
257 // get the magic code
258 if ( fgets( line, 127, f ) == NULL )
259 break;
260
261 // skip comments
262 while ( sscanf( line, " #%s", comment ) > 0 )
263 if ( fgets( line, 127, f ) == NULL )
264 break;
265
266 if ( line[0] != 'P' || line[1] != '5' )
267 break;
268
269 // skip white space and see if a new line must be fetched
270 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
271 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
272 break;
273
274 // skip comments
275 while ( sscanf( line, " #%s", comment ) > 0 )
276 if ( fgets( line, 127, f ) == NULL )
277 break;
278
279 // get the dimensions
280 if ( line[0] == 'P' )
281 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
282 else
283 i = sscanf( line, "%d %d %d", width, height, &maxval );
284
285 // get the height value, if not yet
286 if ( i < 2 )
287 {
288 if ( fgets( line, 127, f ) == NULL )
289 break;
290
291 // skip comments
292 while ( sscanf( line, " #%s", comment ) > 0 )
293 if ( fgets( line, 127, f ) == NULL )
294 break;
295
296 i = sscanf( line, "%d", height );
297 if ( i == 0 )
298 break;
299 else
300 i = 2;
301 }
302
303 // get the maximum gray value, if not yet
304 if ( i < 3 )
305 {
306 if ( fgets( line, 127, f ) == NULL )
307 break;
308
309 // skip comments
310 while ( sscanf( line, " #%s", comment ) > 0 )
311 if ( fgets( line, 127, f ) == NULL )
312 break;
313
314 i = sscanf( line, "%d", &maxval );
315 if ( i == 0 )
316 break;
317 }
318
319 // determine if this is one or two bytes per pixel
320 bpp = maxval > 255 ? 2 : 1;
321
322 // allocate temporary storage for the raw data
323 data = mlt_pool_alloc( *width * *height * bpp );
324 if ( data == NULL )
325 break;
326
327 // read the raw data
328 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
329 break;
330
331 // allocate the luma bitmap
332 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
333 if ( *map == NULL )
334 break;
335
336 // proces the raw data into the luma bitmap
337 for ( i = 0; i < *width * *height * bpp; i += bpp )
338 {
339 if ( bpp == 1 )
340 *p++ = data[ i ] << 8;
341 else
342 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
343 }
344
345 break;
346 }
347
348 if ( data != NULL )
349 mlt_pool_release( data );
350 }
351
352 /** Generate a luma map from any YUV image.
353 */
354
355 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
356 {
357 int i;
358
359 // allocate the luma bitmap
360 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
361 if ( *map == NULL )
362 return;
363
364 // proces the image data into the luma bitmap
365 for ( i = 0; i < width * height * 2; i += 2 )
366 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
367 }
368
369
370 /** Composite a source line over a destination line
371 */
372
373 static inline
374 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
375 {
376 register int j;
377 int a, mix;
378
379 for ( j = 0; j < width_src; j ++ )
380 {
381 a = ( alpha == NULL ) ? 255 : *alpha ++;
382 mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight );
383 mix = ( mix * ( a + 1 ) ) >> 8;
384 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
385 dest++;
386 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
387 dest++;
388 }
389 }
390
391 /** Composite function.
392 */
393
394 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
395 {
396 int ret = 0;
397 int i;
398 int x_src = 0, y_src = 0;
399 int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 );
400 int step = ( field > -1 ) ? 2 : 1;
401 int bpp = 2;
402 int stride_src = width_src * bpp;
403 int stride_dest = width_dest * bpp;
404
405 // Adjust to consumer scale
406 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
407 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
408 int x_uneven = x & 1;
409
410 // optimization points - no work to do
411 if ( width_src <= 0 || height_src <= 0 )
412 return ret;
413
414 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
415 return ret;
416
417 // crop overlay off the left edge of frame
418 if ( x < 0 )
419 {
420 x_src = -x;
421 width_src -= x_src;
422 x = 0;
423 }
424
425 // crop overlay beyond right edge of frame
426 if ( x + width_src > width_dest )
427 width_src = width_dest - x;
428
429 // crop overlay off the top edge of the frame
430 if ( y < 0 )
431 {
432 y_src = -y;
433 height_src -= y_src;
434 y = 0;
435 }
436
437 // crop overlay below bottom edge of frame
438 if ( y + height_src > height_dest )
439 height_src = height_dest - y;
440
441 // offset pointer into overlay buffer based on cropping
442 p_src += x_src * bpp + y_src * stride_src;
443
444 // offset pointer into frame buffer based upon positive coordinates only!
445 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
446
447 // offset pointer into alpha channel based upon cropping
448 if ( p_alpha )
449 p_alpha += x_src + y_src * stride_src / bpp;
450
451 // offset pointer into luma channel based upon cropping
452 if ( p_luma )
453 p_luma += x_src + y_src * stride_src / bpp;
454
455 // Assuming lower field first
456 // Special care is taken to make sure the b_frame is aligned to the correct field.
457 // field 0 = lower field and y should be odd (y is 0-based).
458 // field 1 = upper field and y should be even.
459 if ( ( field > -1 ) && ( y % 2 == field ) )
460 {
461 //fprintf( stderr, "field %d y %d\n", field, y );
462 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
463 p_dest += stride_dest;
464 else
465 p_dest -= stride_dest;
466 }
467
468 // On the second field, use the other lines from b_frame
469 if ( field == 1 )
470 {
471 p_src += stride_src;
472 if ( p_alpha )
473 p_alpha += stride_src / bpp;
474 height_src--;
475 }
476
477 stride_src *= step;
478 stride_dest *= step;
479 int alpha_stride = stride_src / bpp;
480
481 // Make sure than x and w are even
482 if ( x_uneven )
483 {
484 p_src += 2;
485 width_src --;
486 }
487
488 // now do the compositing only to cropped extents
489 if ( line_fn != NULL )
490 {
491 for ( i = 0; i < height_src; i += step )
492 {
493 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
494
495 p_src += stride_src;
496 p_dest += stride_dest;
497 if ( p_alpha )
498 p_alpha += alpha_stride;
499 if ( p_luma )
500 p_luma += alpha_stride;
501 }
502 }
503 else
504 {
505 for ( i = 0; i < height_src; i += step )
506 {
507 composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
508
509 p_src += stride_src;
510 p_dest += stride_dest;
511 if ( p_alpha )
512 p_alpha += alpha_stride;
513 if ( p_luma )
514 p_luma += alpha_stride;
515 }
516 }
517
518 return ret;
519 }
520
521
522 /** Scale 16bit greyscale luma map using nearest neighbor.
523 */
524
525 static inline void
526 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height )
527 {
528 register int i, j;
529 register int x_step = ( src_width << 16 ) / dest_width;
530 register int y_step = ( src_height << 16 ) / dest_height;
531 register int x, y = 0;
532
533 for ( i = 0; i < dest_height; i++ )
534 {
535 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
536 x = 0;
537
538 for ( j = 0; j < dest_width; j++ )
539 {
540 *dest_buf++ = src[ x >> 16 ];
541 x += x_step;
542 }
543 y += y_step;
544 }
545 }
546
547 static uint16_t* get_luma( mlt_properties properties, int width, int height )
548 {
549 // The cached luma map information
550 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
551 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
552 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
553
554 // If the filename property changed, reload the map
555 char *resource = mlt_properties_get( properties, "luma" );
556
557 char temp[ 512 ];
558
559 if ( resource != NULL && strchr( resource, '%' ) )
560 {
561 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
562 resource = temp;
563 }
564
565 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
566 {
567 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
568 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
569 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
570
571 // Load the original luma once
572 if ( orig_bitmap == NULL )
573 {
574 char *extension = extension = strrchr( resource, '.' );
575
576 // See if it is a PGM
577 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
578 {
579 // Open PGM
580 FILE *f = fopen( resource, "r" );
581 if ( f != NULL )
582 {
583 // Load from PGM
584 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
585 fclose( f );
586
587 // Remember the original size for subsequent scaling
588 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
589 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
590 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
591 }
592 }
593 else
594 {
595 // Get the factory producer service
596 char *factory = mlt_properties_get( properties, "factory" );
597
598 // Create the producer
599 mlt_producer producer = mlt_factory_producer( factory, resource );
600
601 // If we have one
602 if ( producer != NULL )
603 {
604 // Get the producer properties
605 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
606
607 // Ensure that we loop
608 mlt_properties_set( producer_properties, "eof", "loop" );
609
610 // Now pass all producer. properties on the transition down
611 mlt_properties_pass( producer_properties, properties, "luma." );
612
613 // We will get the alpha frame from the producer
614 mlt_frame luma_frame = NULL;
615
616 // Get the luma frame
617 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
618 {
619 uint8_t *luma_image;
620 mlt_image_format luma_format = mlt_image_yuv422;
621
622 // Get image from the luma producer
623 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
624 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
625
626 // Generate the luma map
627 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
628 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
629
630 // Remember the original size for subsequent scaling
631 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
632 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
633 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
634
635 // Cleanup the luma frame
636 mlt_frame_close( luma_frame );
637 }
638
639 // Cleanup the luma producer
640 mlt_producer_close( producer );
641 }
642 }
643 }
644 // Scale luma map
645 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
646 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height );
647
648 // Remember the scaled luma size to prevent unnecessary scaling
649 mlt_properties_set_int( properties, "_luma.width", width );
650 mlt_properties_set_int( properties, "_luma.height", height );
651 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
652 }
653 return luma_bitmap;
654 }
655
656 /** Get the properly sized image from b_frame.
657 */
658
659 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
660 {
661 int ret = 0;
662 mlt_image_format format = mlt_image_yuv422;
663
664 // Get the properties objects
665 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
666 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
667
668 if ( mlt_properties_get( properties, "distort" ) == NULL && mlt_properties_get( b_props, "distort" ) == NULL && geometry->item.distort == 0 )
669 {
670 // Adjust b_frame pixel aspect
671 int normalised_width = geometry->item.w;
672 int normalised_height = geometry->item.h;
673 int real_width = get_value( b_props, "real_width", "width" );
674 int real_height = get_value( b_props, "real_height", "height" );
675 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
676 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
677 int scaled_width = input_ar / output_ar * real_width;
678 int scaled_height = real_height;
679
680 // Now ensure that our images fit in the normalised frame
681 if ( scaled_width > normalised_width )
682 {
683 scaled_height = scaled_height * normalised_width / scaled_width;
684 scaled_width = normalised_width;
685 }
686 if ( scaled_height > normalised_height )
687 {
688 scaled_width = scaled_width * normalised_height / scaled_height;
689 scaled_height = normalised_height;
690 }
691
692 // Now apply the fill
693 // TODO: Should combine fill/distort in one property
694 if ( mlt_properties_get( properties, "fill" ) != NULL )
695 {
696 scaled_width = ( geometry->item.w / scaled_width ) * scaled_width;
697 scaled_height = ( geometry->item.h / scaled_height ) * scaled_height;
698 }
699
700 // Save the new scaled dimensions
701 geometry->sw = scaled_width;
702 geometry->sh = scaled_height;
703 }
704 else
705 {
706 geometry->sw = geometry->item.w;
707 geometry->sh = geometry->item.h;
708 }
709
710 // We want to ensure that we bypass resize now...
711 mlt_properties_set( b_props, "distort", "true" );
712
713 // Take into consideration alignment for optimisation
714 if ( !mlt_properties_get_int( properties, "titles" ) )
715 alignment_calculate( geometry );
716
717 // Adjust to consumer scale
718 int x = geometry->item.x * *width / geometry->nw;
719 int y = geometry->item.y * *height / geometry->nh;
720 *width = geometry->sw * *width / geometry->nw;
721 *height = geometry->sh * *height / geometry->nh;
722
723 //x = ( x | 1 ) ^ 1;
724
725 // optimization points - no work to do
726 if ( *width < 1 || *height < 1 )
727 return 1;
728
729 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
730 return 1;
731
732 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
733
734 return ret;
735 }
736
737
738 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, float position )
739 {
740 // Get the properties from the transition
741 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
742
743 // Get the properties from the frame
744 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
745
746 // Structures for geometry
747 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
748
749 // Obtain the normalised width and height from the a_frame
750 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
751 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
752
753 // Now parse the geometries
754 if ( start == NULL )
755 {
756 // Parse the transitions properties
757 start = transition_parse_keys( this, normalised_width, normalised_height );
758
759 // Assign to properties to ensure we get destroyed
760 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
761 }
762 else
763 {
764 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
765 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
766 }
767
768 // Do the calculation
769 geometry_calculate( this, result, position );
770
771 // Assign normalised info
772 result->nw = normalised_width;
773 result->nh = normalised_height;
774
775 // Now parse the alignment
776 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
777 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
778
779 return start;
780 }
781
782 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
783 {
784 uint8_t *end = src + length;
785 while ( src < end )
786 {
787 *dest ++ = *src ++;
788 *dest ++ = *src ++;
789 }
790 }
791
792 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
793 {
794 // Create a frame to return
795 mlt_frame b_frame = mlt_frame_init( );
796
797 // Get the properties of the a frame
798 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
799
800 // Get the properties of the b frame
801 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
802
803 // Get the position
804 int position = position_calculate( this, frame_position );
805
806 // Destination image
807 uint8_t *dest = NULL;
808
809 // Get the image and dimensions
810 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
811 int width = mlt_properties_get_int( a_props, "width" );
812 int height = mlt_properties_get_int( a_props, "height" );
813
814 // Pointers for copy operation
815 uint8_t *p;
816
817 // Coordinates
818 int w = 0;
819 int h = 0;
820 int x = 0;
821 int y = 0;
822
823 int ss = 0;
824 int ds = 0;
825
826 // Will need to know region to copy
827 struct geometry_s result;
828
829 float delta = delta_calculate( this, a_frame );
830
831 // Calculate the region now
832 composite_calculate( this, &result, a_frame, position + delta / 2 );
833
834 // Need to scale down to actual dimensions
835 x = rint( 0.5 + result.item.x * width / result.nw );
836 y = rint( 0.5 + result.item.y * height / result.nh );
837 w = rint( 0.5 + result.item.w * width / result.nw );
838 h = rint( 0.5 + result.item.h * height / result.nh );
839
840 // Make sure that x and w are even
841 if ( x & 1 )
842 {
843 x --;
844 w += 2;
845 if ( w & 1 )
846 w --;
847 }
848 else if ( w & 1 )
849 {
850 w ++;
851 }
852
853 ds = w * 2;
854 ss = width * 2;
855
856 // Now we need to create a new destination image
857 dest = mlt_pool_alloc( w * h * 2 );
858
859 // Assign to the new frame
860 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
861 mlt_properties_set_int( b_props, "width", w );
862 mlt_properties_set_int( b_props, "height", h );
863
864 if ( y < 0 )
865 {
866 dest += ( ds * -y );
867 h += y;
868 y = 0;
869 }
870
871 if ( y + h > height )
872 h -= ( y + h - height );
873
874 if ( x < 0 )
875 {
876 dest += -x * 2;
877 w += x;
878 x = 0;
879 }
880
881 // Copy the region of the image
882 p = image + y * ss + x * 2;
883
884 while ( h -- )
885 {
886 inline_memcpy( dest, p, w * 2 );
887 dest += ds;
888 p += ss;
889 }
890
891 // Assign this position to the b frame
892 mlt_frame_set_position( b_frame, frame_position );
893 mlt_properties_set( b_props, "distort", "true" );
894
895 // Return the frame
896 return b_frame;
897 }
898
899 /** Get the image.
900 */
901
902 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
903 {
904 // Get the b frame from the stack
905 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
906
907 // Get the transition from the a frame
908 mlt_transition this = mlt_frame_pop_service( a_frame );
909
910 // This compositer is yuv422 only
911 *format = mlt_image_yuv422;
912
913 // Get the image from the a frame
914 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
915
916 // Get the properties from the transition
917 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
918
919 if ( b_frame != NULL )
920 {
921 // Get the properties of the a frame
922 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
923
924 // Get the properties of the b frame
925 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
926
927 // Structures for geometry
928 struct geometry_s result;
929
930 // Calculate the position
931 float position = mlt_properties_get_double( b_props, "relative_position" );
932 float delta = delta_calculate( this, a_frame );
933
934 // Get the image from the b frame
935 uint8_t *image_b = NULL;
936 int width_b = *width;
937 int height_b = *height;
938
939 // Do the calculation
940 composite_calculate( this, &result, a_frame, position );
941
942 // Optimisation - no compositing required
943 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
944 return 0;
945
946 // Need to keep the width/height of the a_frame on the b_frame for titling
947 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
948 {
949 mlt_properties_set_int( a_props, "dest_width", *width );
950 mlt_properties_set_int( a_props, "dest_height", *height );
951 mlt_properties_set_int( b_props, "dest_width", *width );
952 mlt_properties_set_int( b_props, "dest_height", *height );
953 }
954 else
955 {
956 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
957 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
958 }
959
960 // Since we are the consumer of the b_frame, we must pass along these
961 // consumer properties from the a_frame
962 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
963 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
964 mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) );
965 mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) );
966
967 // Special case for titling...
968 if ( mlt_properties_get_int( properties, "titles" ) )
969 {
970 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
971 mlt_properties_set( b_props, "rescale.interp", "hyper" );
972 mlt_properties_set( properties, "fill", NULL );
973 width_b = mlt_properties_get_int( a_props, "dest_width" );
974 height_b = mlt_properties_get_int( a_props, "dest_height" );
975 }
976
977 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
978 {
979 uint8_t *dest = *image;
980 uint8_t *src = image_b;
981 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
982 int progressive =
983 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
984 mlt_properties_get_int( properties, "progressive" );
985 int field;
986
987 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
988 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
989 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
990 composite_line_fn line_fn = NULL;
991
992 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
993 {
994 // Assume lower field (0) first
995 float field_position = position + field * delta;
996
997 // Do the calculation if we need to
998 composite_calculate( this, &result, a_frame, field_position );
999
1000 if ( mlt_properties_get_int( properties, "titles" ) )
1001 {
1002 result.nw = result.item.w = *width;
1003 result.nh = result.item.h = *height;
1004 result.sw = width_b;
1005 result.sh = height_b;
1006 }
1007
1008 // Align
1009 alignment_calculate( &result );
1010
1011 // Composite the b_frame on the a_frame
1012 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1013 }
1014 }
1015 }
1016
1017 return 0;
1018 }
1019
1020 /** Composition transition processing.
1021 */
1022
1023 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1024 {
1025 // Get a unique name to store the frame position
1026 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
1027
1028 // Assign the current position to the name
1029 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_frame_get_position( a_frame ) );
1030
1031 // Propogate the transition properties to the b frame
1032 mlt_properties_set_double( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1033
1034 mlt_frame_push_service( a_frame, this );
1035 mlt_frame_push_frame( a_frame, b_frame );
1036 mlt_frame_push_get_image( a_frame, transition_get_image );
1037 return a_frame;
1038 }
1039
1040 /** Constructor for the filter.
1041 */
1042
1043 mlt_transition transition_composite_init( char *arg )
1044 {
1045 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1046 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1047 {
1048 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1049
1050 this->process = composite_process;
1051
1052 // Default starting motion and zoom
1053 mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" );
1054
1055 // Default factory
1056 mlt_properties_set( properties, "factory", "fezzik" );
1057
1058 #ifdef USE_MMX
1059 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1060 #endif
1061 }
1062 return this;
1063 }