New geometry specification
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 int frame;
44 float position;
45 float mix;
46 int nw; // normalised width
47 int nh; // normalised height
48 int sw; // scaled width, not including consumer scale based upon w/nw
49 int sh; // scaled height, not including consumer scale based upon h/nh
50 float x;
51 float y;
52 float w;
53 float h;
54 int halign; // horizontal alignment: 0=left, 1=center, 2=right
55 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
56 int distort;
57 struct geometry_s *next;
58 };
59
60 /** Parse a value from a geometry string.
61 */
62
63 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
64 {
65 float value = defaults;
66
67 if ( *ptr != NULL && **ptr != '\0' )
68 {
69 char *end = NULL;
70 value = strtod( *ptr, &end );
71 if ( end != NULL )
72 {
73 if ( *end == '%' )
74 value = ( value / 100.0 ) * normalisation;
75 while ( *end == delim || *end == '%' )
76 end ++;
77 }
78 *ptr = end;
79 }
80
81 return value;
82 }
83
84 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
85 expressed as a percentage by appending a % after the value, otherwise values are
86 assumed to be relative to the normalised dimensions of the consumer.
87 */
88
89 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
90 {
91 // Assign normalised width and height
92 geometry->nw = nw;
93 geometry->nh = nh;
94
95 // Assign from defaults if available
96 if ( defaults != NULL )
97 {
98 geometry->x = defaults->x;
99 geometry->y = defaults->y;
100 geometry->w = geometry->sw = defaults->w;
101 geometry->h = geometry->sh = defaults->h;
102 geometry->distort = defaults->distort;
103 geometry->mix = defaults->mix;
104 defaults->next = geometry;
105 }
106 else
107 {
108 geometry->mix = 100;
109 }
110
111 // Parse the geomtry string
112 if ( property != NULL && strcmp( property, "" ) )
113 {
114 char *ptr = property;
115 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
116 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
117 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
118 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
119 if ( *ptr == '!' )
120 {
121 geometry->distort = 1;
122 ptr ++;
123 if ( *ptr == ':' )
124 ptr ++;
125 }
126 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
127 }
128 }
129
130 /** Calculate real geometry.
131 */
132
133 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
134 {
135 // Search in for position
136 struct geometry_s *out = in->next;
137
138 if ( position >= 1.0 )
139 {
140 int section = floor( position );
141 position -= section;
142 if ( section % 2 == 1 )
143 position = 1.0 - position;
144 }
145
146 while ( out->next != NULL )
147 {
148 if ( position >= in->position && position < out->position )
149 break;
150
151 in = out;
152 out = in->next;
153 }
154
155 position = ( position - in->position ) / ( out->position - in->position );
156
157 // Calculate this frames geometry
158 if ( in->frame != out->frame - 1 )
159 {
160 output->nw = in->nw;
161 output->nh = in->nh;
162 output->x = rint( in->x + ( out->x - in->x ) * position + 0.5 );
163 output->y = rint( in->y + ( out->y - in->y ) * position + 0.5 );
164 output->w = rint( in->w + ( out->w - in->w ) * position + 0.5 );
165 output->h = rint( in->h + ( out->h - in->h ) * position + 0.5 );
166 output->mix = in->mix + ( out->mix - in->mix ) * position;
167 output->distort = in->distort;
168 }
169 else
170 {
171 output->nw = out->nw;
172 output->nh = out->nh;
173 output->x = out->x;
174 output->y = out->y;
175 output->w = out->w;
176 output->h = out->h;
177 output->mix = out->mix;
178 output->distort = out->distort;
179 }
180 }
181
182 static void transition_destroy_keys( void *arg )
183 {
184 struct geometry_s *ptr = arg;
185 struct geometry_s *next = NULL;
186
187 while ( ptr != NULL )
188 {
189 next = ptr->next;
190 free( ptr );
191 ptr = next;
192 }
193 }
194
195 static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
196 {
197 // Loop variable for property interrogation
198 int i = 0;
199
200 // Get the properties of the transition
201 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
202
203 // Get the in and out position
204 mlt_position in = mlt_transition_get_in( this );
205 mlt_position out = mlt_transition_get_out( this );
206
207 // Create the start
208 struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
209
210 // Create the end (we always need two entries)
211 struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
212
213 // Pointer
214 struct geometry_s *ptr = start;
215
216 // Check if we're using the new style geometry
217 if ( mlt_properties_get( properties, "geometry" ) )
218 {
219 // Sundry vars
220 int i;
221 int frame = 0;
222
223 // Obtain the geometry data - this is presented in the form:
224 // x,y:WxH[!][:mix][;f=x,y:WxH[!][:mix]]*
225 char *data = mlt_properties_get( properties, "geometry" );
226
227 // Split the data on the ; to seperate the values
228 mlt_tokeniser tokens = mlt_tokeniser_init( );
229 mlt_tokeniser_parse_new( tokens, data, ";" );
230
231 // Parse the first entry
232 geometry_parse( start, NULL, mlt_tokeniser_get_string( tokens, 0 ), normalised_width, normalised_height );
233
234 // Iterate through the remainder
235 for ( i = 1; i < mlt_tokeniser_count( tokens ); i ++ )
236 {
237 // Get the current value
238 char *value = mlt_tokeniser_get_string( tokens, i );
239
240 // Used to determine the position
241 float position = 0;
242
243 // Determine the position of the / delimiter
244 char *p = strchr( value, '=' );
245
246 // Ensure that it has a frame and extract that value
247 if ( p )
248 {
249 frame = atoi( value );
250 value = p + 1;
251 }
252 else
253 {
254 fprintf( stderr, "Malformed geometry - no frame in %s (%d)\n", value, i );
255 }
256
257 // Determine the position
258 if ( frame >= 0 && frame < ( out - in ) )
259 position = ( float )frame / ( float )( out - in + 1 );
260 else if ( frame < 0 && - frame < ( out - in ) )
261 position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
262
263 // For now, we'll exclude all keys received out of order
264 if ( position > ptr->position )
265 {
266 // Create a new geometry
267 struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
268
269 // Parse and add to the list
270 geometry_parse( temp, ptr, value, normalised_width, normalised_height );
271
272 // Assign the position and frame
273 temp->frame = frame;
274 temp->position = position;
275
276 // Allow the next to be appended after this one
277 ptr = temp;
278 }
279 }
280
281 // Close the tokens
282 mlt_tokeniser_close( tokens );
283
284 // Parse the end
285 geometry_parse( end, ptr, NULL, normalised_width, normalised_height );
286 if ( out > 0 )
287 end->position = ( float )( out - in ) / ( float )( out - in + 1 );
288 else
289 end->position = 1;
290 }
291 else
292 {
293 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
294 // practical use
295
296 // Parse the start property
297 geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
298
299 // Parse the keys in between
300 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
301 {
302 // Get the name of the property
303 char *name = mlt_properties_get_name( properties, i );
304
305 // Check that it's valid
306 if ( !strncmp( name, "key[", 4 ) )
307 {
308 // Get the value of the property
309 char *value = mlt_properties_get_value( properties, i );
310
311 // Determine the frame number
312 int frame = atoi( name + 4 );
313
314 // Determine the position
315 float position = 0;
316
317 if ( frame >= 0 && frame < ( out - in ) )
318 position = ( float )frame / ( float )( out - in + 1 );
319 else if ( frame < 0 && - frame < ( out - in ) )
320 position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
321
322 // For now, we'll exclude all keys received out of order
323 if ( position > ptr->position )
324 {
325 // Create a new geometry
326 struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
327
328 // Parse and add to the list
329 geometry_parse( temp, ptr, value, normalised_width, normalised_height );
330
331 // Assign the position and frame
332 temp->frame = frame;
333 temp->position = position;
334
335 // Allow the next to be appended after this one
336 ptr = temp;
337 }
338 else
339 {
340 fprintf( stderr, "Key out of order - skipping %s\n", name );
341 }
342 }
343 }
344
345 // Parse the end
346 geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
347 if ( out > 0 )
348 end->position = ( float )( out - in ) / ( float )( out - in + 1 );
349 else
350 end->position = 1;
351 }
352
353 return start;
354 }
355
356 /** Parse the alignment properties into the geometry.
357 */
358
359 static int alignment_parse( char* align )
360 {
361 int ret = 0;
362
363 if ( align == NULL );
364 else if ( isdigit( align[ 0 ] ) )
365 ret = atoi( align );
366 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
367 ret = 1;
368 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
369 ret = 2;
370
371 return ret;
372 }
373
374 /** Adjust position according to scaled size and alignment properties.
375 */
376
377 static void alignment_calculate( struct geometry_s *geometry )
378 {
379 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2;
380 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2;
381 }
382
383 /** Calculate the position for this frame.
384 */
385
386 static float position_calculate( mlt_transition this, mlt_position position )
387 {
388 // Get the in and out position
389 mlt_position in = mlt_transition_get_in( this );
390 mlt_position out = mlt_transition_get_out( this );
391
392 // Now do the calcs
393 return ( float )( position - in ) / ( float )( out - in + 1 );
394 }
395
396 /** Calculate the field delta for this frame - position between two frames.
397 */
398
399 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
400 {
401 // Get the in and out position
402 mlt_position in = mlt_transition_get_in( this );
403 mlt_position out = mlt_transition_get_out( this );
404
405 // Get the position of the frame
406 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
407 mlt_position position = mlt_properties_get_position( MLT_FRAME_PROPERTIES( frame ), name );
408
409 // Now do the calcs
410 float x = ( float )( position - in ) / ( float )( out - in + 1 );
411 float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
412
413 return ( y - x ) / 2.0;
414 }
415
416 static int get_value( mlt_properties properties, char *preferred, char *fallback )
417 {
418 int value = mlt_properties_get_int( properties, preferred );
419 if ( value == 0 )
420 value = mlt_properties_get_int( properties, fallback );
421 return value;
422 }
423
424 /** A linear threshold determination function.
425 */
426
427 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
428 {
429 if ( a < edge1 )
430 return 0;
431
432 if ( a >= edge2 )
433 return 0x10000;
434
435 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
436 }
437
438 /** A smoother, non-linear threshold determination function.
439 */
440
441 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
442 {
443 if ( a < edge1 )
444 return 0;
445
446 if ( a >= edge2 )
447 return 0x10000;
448
449 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
450
451 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
452 }
453
454 /** Load the luma map from PGM stream.
455 */
456
457 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
458 {
459 uint8_t *data = NULL;
460 while (1)
461 {
462 char line[128];
463 char comment[128];
464 int i = 2;
465 int maxval;
466 int bpp;
467 uint16_t *p;
468
469 line[127] = '\0';
470
471 // get the magic code
472 if ( fgets( line, 127, f ) == NULL )
473 break;
474
475 // skip comments
476 while ( sscanf( line, " #%s", comment ) > 0 )
477 if ( fgets( line, 127, f ) == NULL )
478 break;
479
480 if ( line[0] != 'P' || line[1] != '5' )
481 break;
482
483 // skip white space and see if a new line must be fetched
484 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
485 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
486 break;
487
488 // skip comments
489 while ( sscanf( line, " #%s", comment ) > 0 )
490 if ( fgets( line, 127, f ) == NULL )
491 break;
492
493 // get the dimensions
494 if ( line[0] == 'P' )
495 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
496 else
497 i = sscanf( line, "%d %d %d", width, height, &maxval );
498
499 // get the height value, if not yet
500 if ( i < 2 )
501 {
502 if ( fgets( line, 127, f ) == NULL )
503 break;
504
505 // skip comments
506 while ( sscanf( line, " #%s", comment ) > 0 )
507 if ( fgets( line, 127, f ) == NULL )
508 break;
509
510 i = sscanf( line, "%d", height );
511 if ( i == 0 )
512 break;
513 else
514 i = 2;
515 }
516
517 // get the maximum gray value, if not yet
518 if ( i < 3 )
519 {
520 if ( fgets( line, 127, f ) == NULL )
521 break;
522
523 // skip comments
524 while ( sscanf( line, " #%s", comment ) > 0 )
525 if ( fgets( line, 127, f ) == NULL )
526 break;
527
528 i = sscanf( line, "%d", &maxval );
529 if ( i == 0 )
530 break;
531 }
532
533 // determine if this is one or two bytes per pixel
534 bpp = maxval > 255 ? 2 : 1;
535
536 // allocate temporary storage for the raw data
537 data = mlt_pool_alloc( *width * *height * bpp );
538 if ( data == NULL )
539 break;
540
541 // read the raw data
542 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
543 break;
544
545 // allocate the luma bitmap
546 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
547 if ( *map == NULL )
548 break;
549
550 // proces the raw data into the luma bitmap
551 for ( i = 0; i < *width * *height * bpp; i += bpp )
552 {
553 if ( bpp == 1 )
554 *p++ = data[ i ] << 8;
555 else
556 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
557 }
558
559 break;
560 }
561
562 if ( data != NULL )
563 mlt_pool_release( data );
564 }
565
566 /** Generate a luma map from any YUV image.
567 */
568
569 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
570 {
571 int i;
572
573 // allocate the luma bitmap
574 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
575 if ( *map == NULL )
576 return;
577
578 // proces the image data into the luma bitmap
579 for ( i = 0; i < width * height * 2; i += 2 )
580 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
581 }
582
583
584 /** Composite a source line over a destination line
585 */
586
587 static inline
588 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
589 {
590 register int j;
591 int a, mix;
592
593 for ( j = 0; j < width_src; j ++ )
594 {
595 a = ( alpha == NULL ) ? 255 : *alpha ++;
596 mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight );
597 mix = ( mix * ( a + 1 ) ) >> 8;
598 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
599 dest++;
600 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
601 dest++;
602 }
603 }
604
605 /** Composite function.
606 */
607
608 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
609 {
610 int ret = 0;
611 int i;
612 int x_src = 0, y_src = 0;
613 int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
614 int step = ( field > -1 ) ? 2 : 1;
615 int bpp = 2;
616 int stride_src = width_src * bpp;
617 int stride_dest = width_dest * bpp;
618
619 // Adjust to consumer scale
620 int x = geometry.x * width_dest / geometry.nw;
621 int y = geometry.y * height_dest / geometry.nh;
622 int uneven = ( x & 1 );
623
624 // optimization points - no work to do
625 if ( width_src <= 0 || height_src <= 0 )
626 return ret;
627
628 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
629 return ret;
630
631 // crop overlay off the left edge of frame
632 if ( x < 0 )
633 {
634 x_src = -x;
635 width_src -= x_src;
636 x = 0;
637 }
638
639 // crop overlay beyond right edge of frame
640 if ( x + width_src > width_dest )
641 width_src = width_dest - x;
642
643 // crop overlay off the top edge of the frame
644 if ( y < 0 )
645 {
646 y_src = -y;
647 height_src -= y_src;
648 y = 0;
649 }
650
651 // crop overlay below bottom edge of frame
652 if ( y + height_src > height_dest )
653 height_src = height_dest - y;
654
655 // offset pointer into overlay buffer based on cropping
656 p_src += x_src * bpp + y_src * stride_src;
657
658 // offset pointer into frame buffer based upon positive coordinates only!
659 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
660
661 // offset pointer into alpha channel based upon cropping
662 if ( p_alpha )
663 p_alpha += x_src + y_src * stride_src / bpp;
664
665 // offset pointer into luma channel based upon cropping
666 if ( p_luma )
667 p_luma += x_src + y_src * stride_src / bpp;
668
669 // Assuming lower field first
670 // Special care is taken to make sure the b_frame is aligned to the correct field.
671 // field 0 = lower field and y should be odd (y is 0-based).
672 // field 1 = upper field and y should be even.
673 if ( ( field > -1 ) && ( y % 2 == field ) )
674 {
675 //fprintf( stderr, "field %d y %d\n", field, y );
676 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
677 p_dest += stride_dest;
678 else
679 p_dest -= stride_dest;
680 }
681
682 // On the second field, use the other lines from b_frame
683 if ( field == 1 )
684 {
685 p_src += stride_src;
686 if ( p_alpha )
687 p_alpha += stride_src / bpp;
688 height_src--;
689 }
690
691 stride_src *= step;
692 stride_dest *= step;
693 int alpha_stride = stride_src / bpp;
694
695 if ( uneven )
696 {
697 p_dest += 2;
698 width_src --;
699 }
700
701 // now do the compositing only to cropped extents
702 if ( line_fn != NULL )
703 {
704 for ( i = 0; i < height_src; i += step )
705 {
706 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
707
708 p_src += stride_src;
709 p_dest += stride_dest;
710 if ( p_alpha )
711 p_alpha += alpha_stride;
712 if ( p_luma )
713 p_luma += alpha_stride;
714 }
715 }
716 else
717 {
718 for ( i = 0; i < height_src; i += step )
719 {
720 composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
721
722 p_src += stride_src;
723 p_dest += stride_dest;
724 if ( p_alpha )
725 p_alpha += alpha_stride;
726 if ( p_luma )
727 p_luma += alpha_stride;
728 }
729 }
730
731 return ret;
732 }
733
734
735 /** Scale 16bit greyscale luma map using nearest neighbor.
736 */
737
738 static inline void
739 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height )
740 {
741 register int i, j;
742 register int x_step = ( src_width << 16 ) / dest_width;
743 register int y_step = ( src_height << 16 ) / dest_height;
744 register int x, y = 0;
745
746 for ( i = 0; i < dest_height; i++ )
747 {
748 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
749 x = 0;
750
751 for ( j = 0; j < dest_width; j++ )
752 {
753 *dest_buf++ = src[ x >> 16 ];
754 x += x_step;
755 }
756 y += y_step;
757 }
758 }
759
760 static uint16_t* get_luma( mlt_properties properties, int width, int height )
761 {
762 // The cached luma map information
763 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
764 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
765 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
766
767 // If the filename property changed, reload the map
768 char *resource = mlt_properties_get( properties, "luma" );
769
770 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
771 {
772 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
773 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
774 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
775
776 // Load the original luma once
777 if ( orig_bitmap == NULL )
778 {
779 char *extension = extension = strrchr( resource, '.' );
780
781 // See if it is a PGM
782 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
783 {
784 // Open PGM
785 FILE *f = fopen( resource, "r" );
786 if ( f != NULL )
787 {
788 // Load from PGM
789 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
790 fclose( f );
791
792 // Remember the original size for subsequent scaling
793 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
794 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
795 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
796 }
797 }
798 else
799 {
800 // Get the factory producer service
801 char *factory = mlt_properties_get( properties, "factory" );
802
803 // Create the producer
804 mlt_producer producer = mlt_factory_producer( factory, resource );
805
806 // If we have one
807 if ( producer != NULL )
808 {
809 // Get the producer properties
810 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
811
812 // Ensure that we loop
813 mlt_properties_set( producer_properties, "eof", "loop" );
814
815 // Now pass all producer. properties on the transition down
816 mlt_properties_pass( producer_properties, properties, "luma." );
817
818 // We will get the alpha frame from the producer
819 mlt_frame luma_frame = NULL;
820
821 // Get the luma frame
822 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
823 {
824 uint8_t *luma_image;
825 mlt_image_format luma_format = mlt_image_yuv422;
826
827 // Get image from the luma producer
828 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
829 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
830
831 // Generate the luma map
832 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
833 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
834
835 // Remember the original size for subsequent scaling
836 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
837 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
838 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
839
840 // Cleanup the luma frame
841 mlt_frame_close( luma_frame );
842 }
843
844 // Cleanup the luma producer
845 mlt_producer_close( producer );
846 }
847 }
848 }
849 // Scale luma map
850 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
851 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height );
852
853 // Remember the scaled luma size to prevent unnecessary scaling
854 mlt_properties_set_int( properties, "_luma.width", width );
855 mlt_properties_set_int( properties, "_luma.height", height );
856 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
857 }
858 return luma_bitmap;
859 }
860
861 /** Get the properly sized image from b_frame.
862 */
863
864 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
865 {
866 int ret = 0;
867 mlt_image_format format = mlt_image_yuv422;
868
869 // Get the properties objects
870 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
871 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
872
873 if ( mlt_properties_get( properties, "distort" ) == NULL && mlt_properties_get( b_props, "distort" ) == NULL && geometry->distort == 0 )
874 {
875 // Adjust b_frame pixel aspect
876 int normalised_width = geometry->w;
877 int normalised_height = geometry->h;
878 int real_width = get_value( b_props, "real_width", "width" );
879 int real_height = get_value( b_props, "real_height", "height" );
880 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
881 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
882 int scaled_width = input_ar / output_ar * real_width;
883 int scaled_height = real_height;
884
885 // Now ensure that our images fit in the normalised frame
886 if ( scaled_width > normalised_width )
887 {
888 scaled_height = scaled_height * normalised_width / scaled_width;
889 scaled_width = normalised_width;
890 }
891 if ( scaled_height > normalised_height )
892 {
893 scaled_width = scaled_width * normalised_height / scaled_height;
894 scaled_height = normalised_height;
895 }
896
897 // Now apply the fill
898 // TODO: Should combine fill/distort in one property
899 if ( mlt_properties_get( properties, "fill" ) != NULL )
900 {
901 scaled_width = ( geometry->w / scaled_width ) * scaled_width;
902 scaled_height = ( geometry->h / scaled_height ) * scaled_height;
903 }
904
905 // Save the new scaled dimensions
906 geometry->sw = scaled_width;
907 geometry->sh = scaled_height;
908 }
909 else
910 {
911 geometry->sw = geometry->w;
912 geometry->sh = geometry->h;
913 }
914
915 // We want to ensure that we bypass resize now...
916 mlt_properties_set( b_props, "distort", "true" );
917
918 // Take into consideration alignment for optimisation
919 if ( !mlt_properties_get_int( properties, "titles" ) )
920 alignment_calculate( geometry );
921
922 // Adjust to consumer scale
923 int x = geometry->x * *width / geometry->nw;
924 int y = geometry->y * *height / geometry->nh;
925 *width = geometry->sw * *width / geometry->nw;
926 *height = geometry->sh * *height / geometry->nh;
927
928 //x = ( x | 1 ) ^ 1;
929
930 // optimization points - no work to do
931 if ( *width < 1 || *height < 1 )
932 return 1;
933
934 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
935 return 1;
936
937 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
938
939 return ret;
940 }
941
942
943 static struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position )
944 {
945 // Get the properties from the transition
946 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
947
948 // Get the properties from the frame
949 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
950
951 // Structures for geometry
952 struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
953
954 // Obtain the normalised width and height from the a_frame
955 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
956 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
957
958 // Now parse the geometries
959 if ( start == NULL || mlt_properties_get_int( properties, "refresh" ) || start->nw != normalised_width || start->nh != normalised_height )
960 {
961 // Parse the transitions properties
962 start = transition_parse_keys( this, normalised_width, normalised_height );
963
964 // Assign to properties to ensure we get destroyed
965 mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
966 mlt_properties_set_int( properties, "refresh", 0 );
967 }
968
969 // Do the calculation
970 geometry_calculate( result, start, position );
971
972 // Now parse the alignment
973 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
974 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
975
976 return start;
977 }
978
979 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
980 {
981 uint8_t *end = src + length;
982 while ( src < end )
983 {
984 *dest ++ = *src ++;
985 *dest ++ = *src ++;
986 }
987 }
988
989 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
990 {
991 // Create a frame to return
992 mlt_frame b_frame = mlt_frame_init( );
993
994 // Get the properties of the a frame
995 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
996
997 // Get the properties of the b frame
998 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
999
1000 // Get the position
1001 float position = position_calculate( this, frame_position );
1002
1003 // Destination image
1004 uint8_t *dest = NULL;
1005
1006 // Get the image and dimensions
1007 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
1008 int width = mlt_properties_get_int( a_props, "width" );
1009 int height = mlt_properties_get_int( a_props, "height" );
1010
1011 // Pointers for copy operation
1012 uint8_t *p;
1013 uint8_t *q;
1014 uint8_t *r;
1015
1016 // Corrdinates
1017 int w = 0;
1018 int h = 0;
1019 int x = 0;
1020 int y = 0;
1021
1022 // Will need to know region to copy
1023 struct geometry_s result;
1024
1025 // Calculate the region now
1026 composite_calculate( &result, this, a_frame, position );
1027
1028 // Need to scale down to actual dimensions
1029 x = result.x * width / result.nw ;
1030 y = result.y * height / result.nh;
1031 w = result.w * width / result.nw;
1032 h = result.h * height / result.nh;
1033
1034 if ( y < 0 )
1035 {
1036 h = h + y;
1037 y = 0;
1038 }
1039
1040 if ( y + h > height )
1041 h = height - y;
1042
1043 x = ( x | 1 ) ^ 1;
1044 w = ( w | 1 ) ^ 1;
1045
1046 // Now we need to create a new destination image
1047 dest = mlt_pool_alloc( w * h * 2 );
1048
1049 // Copy the region of the image
1050 p = image + y * width * 2 + x * 2;
1051 q = dest;
1052 r = dest + w * h * 2;
1053
1054 while ( q < r )
1055 {
1056 inline_memcpy( q, p, w * 2 );
1057 q += w * 2;
1058 p += width * 2;
1059 }
1060
1061 // Assign to the new frame
1062 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
1063 mlt_properties_set_int( b_props, "width", w );
1064 mlt_properties_set_int( b_props, "height", h );
1065
1066 // Assign this position to the b frame
1067 mlt_frame_set_position( b_frame, frame_position );
1068 mlt_properties_set( b_props, "distort", "true" );
1069
1070 // Return the frame
1071 return b_frame;
1072 }
1073
1074 /** Get the image.
1075 */
1076
1077 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1078 {
1079 // Get the b frame from the stack
1080 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1081
1082 // Get the transition from the a frame
1083 mlt_transition this = mlt_frame_pop_service( a_frame );
1084
1085 // This compositer is yuv422 only
1086 *format = mlt_image_yuv422;
1087
1088 // Get the image from the a frame
1089 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1090
1091 // Get the properties from the transition
1092 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1093
1094 if ( b_frame != NULL )
1095 {
1096 // Get the properties of the a frame
1097 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1098
1099 // Get the properties of the b frame
1100 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1101
1102 // Structures for geometry
1103 struct geometry_s result;
1104
1105 // Calculate the position
1106 float position = mlt_properties_get_double( b_props, "relative_position" );
1107 float delta = delta_calculate( this, a_frame );
1108
1109 // Do the calculation
1110 struct geometry_s *start = composite_calculate( &result, this, a_frame, position );
1111
1112 // Get the image from the b frame
1113 uint8_t *image_b = NULL;
1114 int width_b = *width;
1115 int height_b = *height;
1116
1117 // Optimisation - no compositing required
1118 if ( result.mix == 0 || ( result.w == 0 && result.h == 0 ) )
1119 return 0;
1120
1121 // Need to keep the width/height of the a_frame on the b_frame for titling
1122 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1123 {
1124 mlt_properties_set_int( a_props, "dest_width", *width );
1125 mlt_properties_set_int( a_props, "dest_height", *height );
1126 mlt_properties_set_int( b_props, "dest_width", *width );
1127 mlt_properties_set_int( b_props, "dest_height", *height );
1128 }
1129 else
1130 {
1131 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1132 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1133 }
1134
1135 // Since we are the consumer of the b_frame, we must pass along these
1136 // consumer properties from the a_frame
1137 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
1138 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1139 mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) );
1140 mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) );
1141
1142 // Special case for titling...
1143 if ( mlt_properties_get_int( properties, "titles" ) )
1144 {
1145 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1146 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1147 mlt_properties_set( properties, "fill", NULL );
1148 width_b = mlt_properties_get_int( a_props, "dest_width" );
1149 height_b = mlt_properties_get_int( a_props, "dest_height" );
1150 }
1151
1152 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
1153 {
1154 uint8_t *dest = *image;
1155 uint8_t *src = image_b;
1156 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
1157 int progressive =
1158 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1159 mlt_properties_get_int( properties, "progressive" );
1160 int field;
1161
1162 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1163 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1164 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
1165 composite_line_fn line_fn = NULL;
1166
1167 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1168 {
1169 // Assume lower field (0) first
1170 float field_position = position + field * delta;
1171
1172 // Do the calculation if we need to
1173 geometry_calculate( &result, start, field_position );
1174
1175 if ( mlt_properties_get_int( properties, "titles" ) )
1176 {
1177 result.nw = result.w = *width;
1178 result.nh = result.h = *height;
1179 result.sw = width_b;
1180 result.sh = height_b;
1181 }
1182
1183 // Align
1184 alignment_calculate( &result );
1185
1186 // Composite the b_frame on the a_frame
1187 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1188 }
1189 }
1190 }
1191
1192 return 0;
1193 }
1194
1195 /** Composition transition processing.
1196 */
1197
1198 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1199 {
1200 // Get a unique name to store the frame position
1201 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
1202
1203 // Assign the current position to the name
1204 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_frame_get_position( a_frame ) );
1205
1206 // Propogate the transition properties to the b frame
1207 mlt_properties_set_double( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1208
1209 mlt_frame_push_service( a_frame, this );
1210 mlt_frame_push_frame( a_frame, b_frame );
1211 mlt_frame_push_get_image( a_frame, transition_get_image );
1212 return a_frame;
1213 }
1214
1215 /** Constructor for the filter.
1216 */
1217
1218 mlt_transition transition_composite_init( char *arg )
1219 {
1220 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1221 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1222 {
1223 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1224
1225 this->process = composite_process;
1226
1227 // Default starting motion and zoom
1228 mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" );
1229
1230 // Default factory
1231 mlt_properties_set( properties, "factory", "fezzik" );
1232
1233 #ifdef USE_MMX
1234 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1235 #endif
1236 }
1237 return this;
1238 }