Attempt at an aspect ratio clean up
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 int frame;
44 float position;
45 float mix;
46 int nw; // normalised width
47 int nh; // normalised height
48 int sw; // scaled width, not including consumer scale based upon w/nw
49 int sh; // scaled height, not including consumer scale based upon h/nh
50 float x;
51 float y;
52 float w;
53 float h;
54 int halign; // horizontal alignment: 0=left, 1=center, 2=right
55 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
56 int distort;
57 struct geometry_s *next;
58 };
59
60 /** Parse a value from a geometry string.
61 */
62
63 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
64 {
65 float value = defaults;
66
67 if ( *ptr != NULL && **ptr != '\0' )
68 {
69 char *end = NULL;
70 value = strtod( *ptr, &end );
71 if ( end != NULL )
72 {
73 if ( *end == '%' )
74 value = ( value / 100.0 ) * normalisation;
75 while ( *end == delim || *end == '%' )
76 end ++;
77 }
78 *ptr = end;
79 }
80
81 return value;
82 }
83
84 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
85 expressed as a percentage by appending a % after the value, otherwise values are
86 assumed to be relative to the normalised dimensions of the consumer.
87 */
88
89 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
90 {
91 // Assign normalised width and height
92 geometry->nw = nw;
93 geometry->nh = nh;
94
95 // Assign from defaults if available
96 if ( defaults != NULL )
97 {
98 geometry->x = defaults->x;
99 geometry->y = defaults->y;
100 geometry->w = geometry->sw = defaults->w;
101 geometry->h = geometry->sh = defaults->h;
102 geometry->distort = defaults->distort;
103 geometry->mix = defaults->mix;
104 defaults->next = geometry;
105 }
106 else
107 {
108 geometry->mix = 100;
109 }
110
111 // Parse the geomtry string
112 if ( property != NULL && strcmp( property, "" ) )
113 {
114 char *ptr = property;
115 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
116 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
117 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
118 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
119 if ( *ptr == '!' )
120 {
121 geometry->distort = 1;
122 ptr ++;
123 if ( *ptr == ':' )
124 ptr ++;
125 }
126 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
127 }
128 }
129
130 /** Calculate real geometry.
131 */
132
133 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
134 {
135 // Search in for position
136 struct geometry_s *out = in->next;
137
138 if ( position >= 1.0 )
139 {
140 int section = floor( position );
141 position -= section;
142 if ( section % 2 == 1 )
143 position = 1.0 - position;
144 }
145
146 while ( out->next != NULL )
147 {
148 if ( position >= in->position && position < out->position )
149 break;
150
151 in = out;
152 out = in->next;
153 }
154
155 position = ( position - in->position ) / ( out->position - in->position );
156
157 // Calculate this frames geometry
158 if ( in->frame != out->frame - 1 )
159 {
160 output->nw = in->nw;
161 output->nh = in->nh;
162 output->x = rint( in->x + ( out->x - in->x ) * position + 0.5 );
163 output->y = rint( in->y + ( out->y - in->y ) * position + 0.5 );
164 output->w = rint( in->w + ( out->w - in->w ) * position + 0.5 );
165 output->h = rint( in->h + ( out->h - in->h ) * position + 0.5 );
166 output->mix = in->mix + ( out->mix - in->mix ) * position;
167 output->distort = in->distort;
168 }
169 else
170 {
171 output->nw = out->nw;
172 output->nh = out->nh;
173 output->x = out->x;
174 output->y = out->y;
175 output->w = out->w;
176 output->h = out->h;
177 output->mix = out->mix;
178 output->distort = out->distort;
179 }
180 }
181
182 static void transition_destroy_keys( void *arg )
183 {
184 struct geometry_s *ptr = arg;
185 struct geometry_s *next = NULL;
186
187 while ( ptr != NULL )
188 {
189 next = ptr->next;
190 free( ptr );
191 ptr = next;
192 }
193 }
194
195 static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
196 {
197 // Loop variable for property interrogation
198 int i = 0;
199
200 // Get the properties of the transition
201 mlt_properties properties = mlt_transition_properties( this );
202
203 // Get the in and out position
204 mlt_position in = mlt_transition_get_in( this );
205 mlt_position out = mlt_transition_get_out( this );
206
207 // Create the start
208 struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
209
210 // Create the end (we always need two entries)
211 struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
212
213 // Pointer
214 struct geometry_s *ptr = start;
215
216 // Parse the start property
217 geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
218
219 // Parse the keys in between
220 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
221 {
222 // Get the name of the property
223 char *name = mlt_properties_get_name( properties, i );
224
225 // Check that it's valid
226 if ( !strncmp( name, "key[", 4 ) )
227 {
228 // Get the value of the property
229 char *value = mlt_properties_get_value( properties, i );
230
231 // Determine the frame number
232 int frame = atoi( name + 4 );
233
234 // Determine the position
235 float position = 0;
236
237 if ( frame >= 0 && frame < ( out - in ) )
238 position = ( float )frame / ( float )( out - in + 1 );
239 else if ( frame < 0 && - frame < ( out - in ) )
240 position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
241
242 // For now, we'll exclude all keys received out of order
243 if ( position > ptr->position )
244 {
245 // Create a new geometry
246 struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
247
248 // Parse and add to the list
249 geometry_parse( temp, ptr, value, normalised_width, normalised_height );
250
251 // Assign the position and frame
252 temp->frame = frame;
253 temp->position = position;
254
255 // Allow the next to be appended after this one
256 ptr = temp;
257 }
258 else
259 {
260 fprintf( stderr, "Key out of order - skipping %s\n", name );
261 }
262 }
263 }
264
265 // Parse the end
266 geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
267 if ( out > 0 )
268 end->position = ( float )( out - in ) / ( float )( out - in + 1 );
269 else
270 end->position = 1;
271
272 return start;
273 }
274
275 /** Parse the alignment properties into the geometry.
276 */
277
278 static int alignment_parse( char* align )
279 {
280 int ret = 0;
281
282 if ( align == NULL );
283 else if ( isdigit( align[ 0 ] ) )
284 ret = atoi( align );
285 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
286 ret = 1;
287 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
288 ret = 2;
289
290 return ret;
291 }
292
293 /** Adjust position according to scaled size and alignment properties.
294 */
295
296 static void alignment_calculate( struct geometry_s *geometry )
297 {
298 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2;
299 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2;
300 }
301
302 /** Calculate the position for this frame.
303 */
304
305 static float position_calculate( mlt_transition this, mlt_position position )
306 {
307 // Get the in and out position
308 mlt_position in = mlt_transition_get_in( this );
309 mlt_position out = mlt_transition_get_out( this );
310
311 // Now do the calcs
312 return ( float )( position - in ) / ( float )( out - in + 1 );
313 }
314
315 /** Calculate the field delta for this frame - position between two frames.
316 */
317
318 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
319 {
320 // Get the in and out position
321 mlt_position in = mlt_transition_get_in( this );
322 mlt_position out = mlt_transition_get_out( this );
323
324 // Get the position of the frame
325 char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" );
326 mlt_position position = mlt_properties_get_position( mlt_frame_properties( frame ), name );
327
328 // Now do the calcs
329 float x = ( float )( position - in ) / ( float )( out - in + 1 );
330 float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
331
332 return ( y - x ) / 2.0;
333 }
334
335 static int get_value( mlt_properties properties, char *preferred, char *fallback )
336 {
337 int value = mlt_properties_get_int( properties, preferred );
338 if ( value == 0 )
339 value = mlt_properties_get_int( properties, fallback );
340 return value;
341 }
342
343 /** A linear threshold determination function.
344 */
345
346 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
347 {
348 if ( a < edge1 )
349 return 0;
350
351 if ( a >= edge2 )
352 return 0x10000;
353
354 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
355 }
356
357 /** A smoother, non-linear threshold determination function.
358 */
359
360 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
361 {
362 if ( a < edge1 )
363 return 0;
364
365 if ( a >= edge2 )
366 return 0x10000;
367
368 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
369
370 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
371 }
372
373 /** Load the luma map from PGM stream.
374 */
375
376 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
377 {
378 uint8_t *data = NULL;
379 while (1)
380 {
381 char line[128];
382 char comment[128];
383 int i = 2;
384 int maxval;
385 int bpp;
386 uint16_t *p;
387
388 line[127] = '\0';
389
390 // get the magic code
391 if ( fgets( line, 127, f ) == NULL )
392 break;
393
394 // skip comments
395 while ( sscanf( line, " #%s", comment ) > 0 )
396 if ( fgets( line, 127, f ) == NULL )
397 break;
398
399 if ( line[0] != 'P' || line[1] != '5' )
400 break;
401
402 // skip white space and see if a new line must be fetched
403 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
404 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
405 break;
406
407 // skip comments
408 while ( sscanf( line, " #%s", comment ) > 0 )
409 if ( fgets( line, 127, f ) == NULL )
410 break;
411
412 // get the dimensions
413 if ( line[0] == 'P' )
414 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
415 else
416 i = sscanf( line, "%d %d %d", width, height, &maxval );
417
418 // get the height value, if not yet
419 if ( i < 2 )
420 {
421 if ( fgets( line, 127, f ) == NULL )
422 break;
423
424 // skip comments
425 while ( sscanf( line, " #%s", comment ) > 0 )
426 if ( fgets( line, 127, f ) == NULL )
427 break;
428
429 i = sscanf( line, "%d", height );
430 if ( i == 0 )
431 break;
432 else
433 i = 2;
434 }
435
436 // get the maximum gray value, if not yet
437 if ( i < 3 )
438 {
439 if ( fgets( line, 127, f ) == NULL )
440 break;
441
442 // skip comments
443 while ( sscanf( line, " #%s", comment ) > 0 )
444 if ( fgets( line, 127, f ) == NULL )
445 break;
446
447 i = sscanf( line, "%d", &maxval );
448 if ( i == 0 )
449 break;
450 }
451
452 // determine if this is one or two bytes per pixel
453 bpp = maxval > 255 ? 2 : 1;
454
455 // allocate temporary storage for the raw data
456 data = mlt_pool_alloc( *width * *height * bpp );
457 if ( data == NULL )
458 break;
459
460 // read the raw data
461 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
462 break;
463
464 // allocate the luma bitmap
465 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
466 if ( *map == NULL )
467 break;
468
469 // proces the raw data into the luma bitmap
470 for ( i = 0; i < *width * *height * bpp; i += bpp )
471 {
472 if ( bpp == 1 )
473 *p++ = data[ i ] << 8;
474 else
475 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
476 }
477
478 break;
479 }
480
481 if ( data != NULL )
482 mlt_pool_release( data );
483 }
484
485 /** Generate a luma map from any YUV image.
486 */
487
488 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
489 {
490 int i;
491
492 // allocate the luma bitmap
493 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
494 if ( *map == NULL )
495 return;
496
497 // proces the image data into the luma bitmap
498 for ( i = 0; i < width * height * 2; i += 2 )
499 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
500 }
501
502
503 /** Composite a source line over a destination line
504 */
505
506 static inline
507 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
508 {
509 register int j;
510 int a, mix;
511
512 for ( j = 0; j < width_src; j ++ )
513 {
514 a = ( alpha == NULL ) ? 255 : *alpha ++;
515 mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight );
516 mix = ( mix * ( a + 1 ) ) >> 8;
517 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
518 dest++;
519 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
520 dest++;
521 }
522 }
523
524 /** Composite function.
525 */
526
527 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
528 {
529 int ret = 0;
530 int i;
531 int x_src = 0, y_src = 0;
532 int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
533 int step = ( field > -1 ) ? 2 : 1;
534 int bpp = 2;
535 int stride_src = width_src * bpp;
536 int stride_dest = width_dest * bpp;
537
538 // Adjust to consumer scale
539 int x = geometry.x * width_dest / geometry.nw;
540 int y = geometry.y * height_dest / geometry.nh;
541 int uneven = ( x & 1 );
542
543 // optimization points - no work to do
544 if ( width_src <= 0 || height_src <= 0 )
545 return ret;
546
547 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
548 return ret;
549
550 // crop overlay off the left edge of frame
551 if ( x < 0 )
552 {
553 x_src = -x;
554 width_src -= x_src;
555 x = 0;
556 }
557
558 // crop overlay beyond right edge of frame
559 if ( x + width_src > width_dest )
560 width_src = width_dest - x;
561
562 // crop overlay off the top edge of the frame
563 if ( y < 0 )
564 {
565 y_src = -y;
566 height_src -= y_src;
567 y = 0;
568 }
569
570 // crop overlay below bottom edge of frame
571 if ( y + height_src > height_dest )
572 height_src = height_dest - y;
573
574 // offset pointer into overlay buffer based on cropping
575 p_src += x_src * bpp + y_src * stride_src;
576
577 // offset pointer into frame buffer based upon positive coordinates only!
578 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
579
580 // offset pointer into alpha channel based upon cropping
581 if ( p_alpha )
582 p_alpha += x_src + y_src * stride_src / bpp;
583
584 // offset pointer into luma channel based upon cropping
585 if ( p_luma )
586 p_luma += x_src + y_src * stride_src / bpp;
587
588 // Assuming lower field first
589 // Special care is taken to make sure the b_frame is aligned to the correct field.
590 // field 0 = lower field and y should be odd (y is 0-based).
591 // field 1 = upper field and y should be even.
592 if ( ( field > -1 ) && ( y % 2 == field ) )
593 {
594 //fprintf( stderr, "field %d y %d\n", field, y );
595 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
596 p_dest += stride_dest;
597 else
598 p_dest -= stride_dest;
599 }
600
601 // On the second field, use the other lines from b_frame
602 if ( field == 1 )
603 {
604 p_src += stride_src;
605 if ( p_alpha )
606 p_alpha += stride_src / bpp;
607 height_src--;
608 }
609
610 stride_src *= step;
611 stride_dest *= step;
612 int alpha_stride = stride_src / bpp;
613
614 if ( uneven )
615 p_src -= 2;
616
617 // now do the compositing only to cropped extents
618 if ( line_fn != NULL )
619 {
620 for ( i = 0; i < height_src; i += step )
621 {
622 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
623
624 p_src += stride_src;
625 p_dest += stride_dest;
626 if ( p_alpha )
627 p_alpha += alpha_stride;
628 if ( p_luma )
629 p_luma += alpha_stride;
630 }
631 }
632 else
633 {
634 for ( i = 0; i < height_src; i += step )
635 {
636 composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
637
638 p_src += stride_src;
639 p_dest += stride_dest;
640 if ( p_alpha )
641 p_alpha += alpha_stride;
642 if ( p_luma )
643 p_luma += alpha_stride;
644 }
645 }
646
647 return ret;
648 }
649
650
651 /** Scale 16bit greyscale luma map using nearest neighbor.
652 */
653
654 static inline void
655 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height )
656 {
657 register int i, j;
658 register int x_step = ( src_width << 16 ) / dest_width;
659 register int y_step = ( src_height << 16 ) / dest_height;
660 register int x, y = 0;
661
662 for ( i = 0; i < dest_height; i++ )
663 {
664 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
665 x = 0;
666
667 for ( j = 0; j < dest_width; j++ )
668 {
669 *dest_buf++ = src[ x >> 16 ];
670 x += x_step;
671 }
672 y += y_step;
673 }
674 }
675
676 static uint16_t* get_luma( mlt_properties properties, int width, int height )
677 {
678 // The cached luma map information
679 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
680 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
681 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
682
683 // If the filename property changed, reload the map
684 char *resource = mlt_properties_get( properties, "luma" );
685
686 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
687 {
688 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
689 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
690 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
691
692 // Load the original luma once
693 if ( orig_bitmap == NULL )
694 {
695 char *extension = extension = strrchr( resource, '.' );
696
697 // See if it is a PGM
698 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
699 {
700 // Open PGM
701 FILE *f = fopen( resource, "r" );
702 if ( f != NULL )
703 {
704 // Load from PGM
705 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
706 fclose( f );
707
708 // Remember the original size for subsequent scaling
709 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
710 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
711 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
712 }
713 }
714 else
715 {
716 // Get the factory producer service
717 char *factory = mlt_properties_get( properties, "factory" );
718
719 // Create the producer
720 mlt_producer producer = mlt_factory_producer( factory, resource );
721
722 // If we have one
723 if ( producer != NULL )
724 {
725 // Get the producer properties
726 mlt_properties producer_properties = mlt_producer_properties( producer );
727
728 // Ensure that we loop
729 mlt_properties_set( producer_properties, "eof", "loop" );
730
731 // Now pass all producer. properties on the transition down
732 mlt_properties_pass( producer_properties, properties, "luma." );
733
734 // We will get the alpha frame from the producer
735 mlt_frame luma_frame = NULL;
736
737 // Get the luma frame
738 if ( mlt_service_get_frame( mlt_producer_service( producer ), &luma_frame, 0 ) == 0 )
739 {
740 uint8_t *luma_image;
741 mlt_image_format luma_format = mlt_image_yuv422;
742
743 // Get image from the luma producer
744 mlt_properties_set( mlt_frame_properties( luma_frame ), "rescale.interp", "none" );
745 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
746
747 // Generate the luma map
748 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
749 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
750
751 // Remember the original size for subsequent scaling
752 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
753 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
754 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
755
756 // Cleanup the luma frame
757 mlt_frame_close( luma_frame );
758 }
759
760 // Cleanup the luma producer
761 mlt_producer_close( producer );
762 }
763 }
764 }
765 // Scale luma map
766 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
767 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height );
768
769 // Remember the scaled luma size to prevent unnecessary scaling
770 mlt_properties_set_int( properties, "_luma.width", width );
771 mlt_properties_set_int( properties, "_luma.height", height );
772 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
773 }
774 return luma_bitmap;
775 }
776
777 /** Get the properly sized image from b_frame.
778 */
779
780 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
781 {
782 int ret = 0;
783 mlt_image_format format = mlt_image_yuv422;
784
785 // Get the properties objects
786 mlt_properties b_props = mlt_frame_properties( b_frame );
787 mlt_properties properties = mlt_transition_properties( this );
788
789 if ( mlt_properties_get( properties, "distort" ) == NULL && mlt_properties_get( b_props, "distort" ) == NULL && geometry->distort == 0 )
790 {
791 // Adjust b_frame pixel aspect
792 int normalised_width = geometry->w;
793 int normalised_height = geometry->h;
794 int real_width = get_value( b_props, "real_width", "width" );
795 int real_height = get_value( b_props, "real_height", "height" );
796 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
797 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
798 int scaled_width = input_ar / output_ar * real_width;
799 int scaled_height = real_height;
800
801 // Now ensure that our images fit in the normalised frame
802 if ( scaled_width > normalised_width )
803 {
804 scaled_height = scaled_height * normalised_width / scaled_width;
805 scaled_width = normalised_width;
806 }
807 if ( scaled_height > normalised_height )
808 {
809 scaled_width = scaled_width * normalised_height / scaled_height;
810 scaled_height = normalised_height;
811 }
812
813 // Now apply the fill
814 // TODO: Should combine fill/distort in one property
815 if ( mlt_properties_get( properties, "fill" ) != NULL )
816 {
817 scaled_width = ( geometry->w / scaled_width ) * scaled_width;
818 scaled_height = ( geometry->h / scaled_height ) * scaled_height;
819 }
820
821 // Save the new scaled dimensions
822 geometry->sw = scaled_width;
823 geometry->sh = scaled_height;
824 }
825 else
826 {
827 geometry->sw = geometry->w;
828 geometry->sh = geometry->h;
829 }
830
831 // We want to ensure that we bypass resize now...
832 mlt_properties_set( b_props, "distort", "true" );
833
834 // Take into consideration alignment for optimisation
835 alignment_calculate( geometry );
836
837 // Adjust to consumer scale
838 int x = geometry->x * *width / geometry->nw;
839 int y = geometry->y * *height / geometry->nh;
840 *width = geometry->sw * *width / geometry->nw;
841 *height = geometry->sh * *height / geometry->nh;
842
843 //x = ( x | 1 ) ^ 1;
844
845 // optimization points - no work to do
846 if ( *width < 1 || *height < 1 )
847 return 1;
848
849 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
850 return 1;
851
852 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
853
854 return ret;
855 }
856
857
858 static struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position )
859 {
860 // Get the properties from the transition
861 mlt_properties properties = mlt_transition_properties( this );
862
863 // Get the properties from the frame
864 mlt_properties a_props = mlt_frame_properties( a_frame );
865
866 // Structures for geometry
867 struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
868
869 // Obtain the normalised width and height from the a_frame
870 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
871 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
872
873 // Now parse the geometries
874 if ( start == NULL || mlt_properties_get_int( properties, "refresh" ) || start->nw != normalised_width || start->nh != normalised_height )
875 {
876 // Parse the transitions properties
877 start = transition_parse_keys( this, normalised_width, normalised_height );
878
879 // Assign to properties to ensure we get destroyed
880 mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
881 mlt_properties_set_int( properties, "refresh", 0 );
882 }
883
884 // Do the calculation
885 geometry_calculate( result, start, position );
886
887 // Now parse the alignment
888 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
889 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
890
891 return start;
892 }
893
894 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
895 {
896 uint8_t *end = src + length;
897 while ( src < end )
898 {
899 *dest ++ = *src ++;
900 *dest ++ = *src ++;
901 }
902 }
903
904 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
905 {
906 // Create a frame to return
907 mlt_frame b_frame = mlt_frame_init( );
908
909 // Get the properties of the a frame
910 mlt_properties a_props = mlt_frame_properties( a_frame );
911
912 // Get the properties of the b frame
913 mlt_properties b_props = mlt_frame_properties( b_frame );
914
915 // Get the position
916 float position = position_calculate( this, frame_position );
917
918 // Destination image
919 uint8_t *dest = NULL;
920
921 // Get the image and dimensions
922 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
923 int width = mlt_properties_get_int( a_props, "width" );
924 int height = mlt_properties_get_int( a_props, "height" );
925
926 // Pointers for copy operation
927 uint8_t *p;
928 uint8_t *q;
929 uint8_t *r;
930
931 // Corrdinates
932 int w = 0;
933 int h = 0;
934 int x = 0;
935 int y = 0;
936
937 // Will need to know region to copy
938 struct geometry_s result;
939
940 // Calculate the region now
941 composite_calculate( &result, this, a_frame, position );
942
943 // Need to scale down to actual dimensions
944 x = result.x * width / result.nw ;
945 y = result.y * height / result.nh;
946 w = result.w * width / result.nw;
947 h = result.h * height / result.nh;
948
949 if ( y < 0 )
950 {
951 h = h + y;
952 y = 0;
953 }
954
955 if ( y + h > height )
956 h = height - y;
957
958 x = ( x | 1 ) ^ 1;
959 w = ( w | 1 ) ^ 1;
960
961 // Now we need to create a new destination image
962 dest = mlt_pool_alloc( w * h * 2 );
963
964 // Copy the region of the image
965 p = image + y * width * 2 + x * 2;
966 q = dest;
967 r = dest + w * h * 2;
968
969 while ( q < r )
970 {
971 inline_memcpy( q, p, w * 2 );
972 q += w * 2;
973 p += width * 2;
974 }
975
976 // Assign to the new frame
977 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
978 mlt_properties_set_int( b_props, "width", w );
979 mlt_properties_set_int( b_props, "height", h );
980
981 // Assign this position to the b frame
982 mlt_frame_set_position( b_frame, frame_position );
983 mlt_properties_set( b_props, "distort", "true" );
984
985 // Return the frame
986 return b_frame;
987 }
988
989 /** Get the image.
990 */
991
992 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
993 {
994 // Get the b frame from the stack
995 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
996
997 // Get the transition from the a frame
998 mlt_transition this = mlt_frame_pop_service( a_frame );
999
1000 // This compositer is yuv422 only
1001 *format = mlt_image_yuv422;
1002
1003 // Get the image from the a frame
1004 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1005
1006 // Get the properties from the transition
1007 mlt_properties properties = mlt_transition_properties( this );
1008
1009 if ( b_frame != NULL )
1010 {
1011 // Get the properties of the a frame
1012 mlt_properties a_props = mlt_frame_properties( a_frame );
1013
1014 // Get the properties of the b frame
1015 mlt_properties b_props = mlt_frame_properties( b_frame );
1016
1017 // Structures for geometry
1018 struct geometry_s result;
1019
1020 // Calculate the position
1021 float position = mlt_properties_get_double( b_props, "relative_position" );
1022 float delta = delta_calculate( this, a_frame );
1023
1024 // Do the calculation
1025 struct geometry_s *start = composite_calculate( &result, this, a_frame, position );
1026
1027 // Get the image from the b frame
1028 uint8_t *image_b = NULL;
1029 int width_b = *width;
1030 int height_b = *height;
1031
1032 // Optimisation - no compositing required
1033 if ( result.mix == 0 || ( result.w == 0 && result.h == 0 ) )
1034 return 0;
1035
1036 // Need to keep the width/height of the a_frame on the b_frame for titling
1037 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1038 {
1039 mlt_properties_set_int( a_props, "dest_width", *width );
1040 mlt_properties_set_int( a_props, "dest_height", *height );
1041 mlt_properties_set_int( b_props, "dest_width", *width );
1042 mlt_properties_set_int( b_props, "dest_height", *height );
1043 }
1044 else
1045 {
1046 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1047 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1048 }
1049
1050 // Since we are the consumer of the b_frame, we must pass along these
1051 // consumer properties from the a_frame
1052 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
1053 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1054 mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) );
1055 mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) );
1056
1057 // Special case for titling...
1058 if ( mlt_properties_get_int( properties, "titles" ) )
1059 {
1060 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1061 mlt_properties_set( b_props, "rescale.interp", "nearest" );
1062 mlt_properties_set( properties, "fill", NULL );
1063 width_b = mlt_properties_get_int( a_props, "dest_width" );
1064 height_b = mlt_properties_get_int( a_props, "dest_height" );
1065 }
1066
1067 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
1068 {
1069 uint8_t *dest = *image;
1070 uint8_t *src = image_b;
1071 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
1072 int progressive =
1073 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1074 mlt_properties_get_int( properties, "progressive" );
1075 int field;
1076
1077 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1078 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1079 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
1080 composite_line_fn line_fn = NULL;
1081
1082 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1083 {
1084 // Assume lower field (0) first
1085 float field_position = position + field * delta;
1086
1087 // Do the calculation if we need to
1088 geometry_calculate( &result, start, field_position );
1089
1090 // Align
1091 alignment_calculate( &result );
1092
1093 // Composite the b_frame on the a_frame
1094 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1095 }
1096 }
1097 }
1098
1099 return 0;
1100 }
1101
1102 /** Composition transition processing.
1103 */
1104
1105 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1106 {
1107 // Get a unique name to store the frame position
1108 char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" );
1109
1110 // Assign the current position to the name
1111 mlt_properties_set_position( mlt_frame_properties( a_frame ), name, mlt_frame_get_position( a_frame ) );
1112
1113 // Propogate the transition properties to the b frame
1114 mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1115
1116 mlt_frame_push_service( a_frame, this );
1117 mlt_frame_push_frame( a_frame, b_frame );
1118 mlt_frame_push_get_image( a_frame, transition_get_image );
1119 return a_frame;
1120 }
1121
1122 /** Constructor for the filter.
1123 */
1124
1125 mlt_transition transition_composite_init( char *arg )
1126 {
1127 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1128 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1129 {
1130 mlt_properties properties = mlt_transition_properties( this );
1131
1132 this->process = composite_process;
1133
1134 // Default starting motion and zoom
1135 mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" );
1136
1137 // Default factory
1138 mlt_properties_set( properties, "factory", "fezzik" );
1139
1140 #ifdef USE_MMX
1141 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1142 #endif
1143 }
1144 return this;
1145 }