src/framework/mlt_frame.c
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37 struct mlt_geometry_item_s item;
38 int nw; // normalised width
39 int nh; // normalised height
40 int sw; // scaled width, not including consumer scale based upon w/nw
41 int sh; // scaled height, not including consumer scale based upon h/nh
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44 };
45
46 /** Parse the alignment properties into the geometry.
47 */
48
49 static int alignment_parse( char* align )
50 {
51 int ret = 0;
52
53 if ( align == NULL );
54 else if ( isdigit( align[ 0 ] ) )
55 ret = atoi( align );
56 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
57 ret = 1;
58 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
59 ret = 2;
60
61 return ret;
62 }
63
64 /** Calculate real geometry.
65 */
66
67 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
68 {
69 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
70 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
71 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
72 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
73 int length = mlt_geometry_get_length( geometry );
74
75 // Allow wrapping
76 if ( !repeat_off && position >= length && length != 0 )
77 {
78 int section = position / length;
79 position -= section * length;
80 if ( !mirror_off && section % 2 == 1 )
81 position = length - position;
82 }
83
84 // Fetch the key for the position
85 mlt_geometry_fetch( geometry, &output->item, position );
86 }
87
88 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
89 {
90 // Loop variable for property interrogation
91 int i = 0;
92
93 // Get the properties of the transition
94 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
95
96 // Create an empty geometries object
97 mlt_geometry geometry = mlt_geometry_init( );
98
99 // Get the in and out position
100 mlt_position in = mlt_transition_get_in( this );
101 mlt_position out = mlt_transition_get_out( this );
102 int length = out - in + 1;
103 double cycle = mlt_properties_get_double( properties, "cycle" );
104
105 // Get the new style geometry string
106 char *property = mlt_properties_get( properties, "geometry" );
107
108 // Allow a geometry repeat cycle
109 if ( cycle >= 1 )
110 length = cycle;
111 else if ( cycle > 0 )
112 length *= cycle;
113
114 // Parse the geometry if we have one
115 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
116
117 // Check if we're using the old style geometry
118 if ( property == NULL )
119 {
120 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
121 // practical use - while deprecated, it has been slightly extended too - keys can now
122 // be specified out of order, and can be blanked or NULL to simulate removal
123
124 // Structure to use for parsing and inserting
125 struct mlt_geometry_item_s item;
126
127 // Parse the start property
128 item.frame = 0;
129 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
130 mlt_geometry_insert( geometry, &item );
131
132 // Parse the keys in between
133 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
134 {
135 // Get the name of the property
136 char *name = mlt_properties_get_name( properties, i );
137
138 // Check that it's valid
139 if ( !strncmp( name, "key[", 4 ) )
140 {
141 // Get the value of the property
142 char *value = mlt_properties_get_value( properties, i );
143
144 // Determine the frame number
145 item.frame = atoi( name + 4 );
146
147 // Parse and add to the list
148 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
149 mlt_geometry_insert( geometry, &item );
150 else
151 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
152 }
153 }
154
155 // Parse the end
156 item.frame = -1;
157 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
158 mlt_geometry_insert( geometry, &item );
159 }
160
161 return geometry;
162 }
163
164 /** Adjust position according to scaled size and alignment properties.
165 */
166
167 static void alignment_calculate( struct geometry_s *geometry )
168 {
169 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
170 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
171 }
172
173 /** Calculate the position for this frame.
174 */
175
176 static int position_calculate( mlt_transition this, mlt_position position )
177 {
178 // Get the in and out position
179 mlt_position in = mlt_transition_get_in( this );
180
181 // Now do the calcs
182 return position - in;
183 }
184
185 /** Calculate the field delta for this frame - position between two frames.
186 */
187
188 static inline double delta_calculate( mlt_transition this, mlt_frame frame, mlt_position position )
189 {
190 // Get the in and out position
191 mlt_position in = mlt_transition_get_in( this );
192 mlt_position out = mlt_transition_get_out( this );
193 double length = out - in + 1;
194
195 // Now do the calcs
196 double x = ( double )( position - in ) / length;
197 double y = ( double )( position + 1 - in ) / length;
198
199 return length * ( y - x ) / 2.0;
200 }
201
202 static int get_value( mlt_properties properties, char *preferred, char *fallback )
203 {
204 int value = mlt_properties_get_int( properties, preferred );
205 if ( value == 0 )
206 value = mlt_properties_get_int( properties, fallback );
207 return value;
208 }
209
210 /** A linear threshold determination function.
211 */
212
213 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
214 {
215 if ( a < edge1 )
216 return 0;
217
218 if ( a >= edge2 )
219 return 0x10000;
220
221 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
222 }
223
224 /** A smoother, non-linear threshold determination function.
225 */
226
227 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
228 {
229 if ( a < edge1 )
230 return 0;
231
232 if ( a >= edge2 )
233 return 0x10000;
234
235 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
236
237 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
238 }
239
240 /** Load the luma map from PGM stream.
241 */
242
243 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
244 {
245 uint8_t *data = NULL;
246 while (1)
247 {
248 char line[128];
249 char comment[128];
250 int i = 2;
251 int maxval;
252 int bpp;
253 uint16_t *p;
254
255 line[127] = '\0';
256
257 // get the magic code
258 if ( fgets( line, 127, f ) == NULL )
259 break;
260
261 // skip comments
262 while ( sscanf( line, " #%s", comment ) > 0 )
263 if ( fgets( line, 127, f ) == NULL )
264 break;
265
266 if ( line[0] != 'P' || line[1] != '5' )
267 break;
268
269 // skip white space and see if a new line must be fetched
270 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
271 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
272 break;
273
274 // skip comments
275 while ( sscanf( line, " #%s", comment ) > 0 )
276 if ( fgets( line, 127, f ) == NULL )
277 break;
278
279 // get the dimensions
280 if ( line[0] == 'P' )
281 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
282 else
283 i = sscanf( line, "%d %d %d", width, height, &maxval );
284
285 // get the height value, if not yet
286 if ( i < 2 )
287 {
288 if ( fgets( line, 127, f ) == NULL )
289 break;
290
291 // skip comments
292 while ( sscanf( line, " #%s", comment ) > 0 )
293 if ( fgets( line, 127, f ) == NULL )
294 break;
295
296 i = sscanf( line, "%d", height );
297 if ( i == 0 )
298 break;
299 else
300 i = 2;
301 }
302
303 // get the maximum gray value, if not yet
304 if ( i < 3 )
305 {
306 if ( fgets( line, 127, f ) == NULL )
307 break;
308
309 // skip comments
310 while ( sscanf( line, " #%s", comment ) > 0 )
311 if ( fgets( line, 127, f ) == NULL )
312 break;
313
314 i = sscanf( line, "%d", &maxval );
315 if ( i == 0 )
316 break;
317 }
318
319 // determine if this is one or two bytes per pixel
320 bpp = maxval > 255 ? 2 : 1;
321
322 // allocate temporary storage for the raw data
323 data = mlt_pool_alloc( *width * *height * bpp );
324 if ( data == NULL )
325 break;
326
327 // read the raw data
328 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
329 break;
330
331 // allocate the luma bitmap
332 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
333 if ( *map == NULL )
334 break;
335
336 // proces the raw data into the luma bitmap
337 for ( i = 0; i < *width * *height * bpp; i += bpp )
338 {
339 if ( bpp == 1 )
340 *p++ = data[ i ] << 8;
341 else
342 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
343 }
344
345 break;
346 }
347
348 if ( data != NULL )
349 mlt_pool_release( data );
350 }
351
352 /** Generate a luma map from any YUV image.
353 */
354
355 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
356 {
357 int i;
358
359 // allocate the luma bitmap
360 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
361 if ( *map == NULL )
362 return;
363
364 // proces the image data into the luma bitmap
365 for ( i = 0; i < width * height * 2; i += 2 )
366 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
367 }
368
369
370 /** Composite a source line over a destination line
371 */
372
373 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven_x )
374 {
375 register int j;
376 register int a;
377 register int mix;
378 int uneven_w = width % 2;
379
380 for ( j = 0; j < width; j ++ )
381 {
382 a = *alpha_b ++;
383 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
384 mix = ( mix * a ) >> 8;
385 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
386 dest++;
387 *dest = ( *( src ++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
388 dest++;
389 *alpha_a = mix | *alpha_a;
390 alpha_a ++;
391 }
392
393 if ( uneven_w )
394 {
395 a = *alpha_b ++;
396 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
397 mix = ( mix * a ) >> 8;
398 *dest = ( *src ++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
399 dest++;
400 *alpha_a = mix | *alpha_a;
401 alpha_a ++;
402 }
403 }
404
405 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven_x )
406 {
407 register int j;
408 register int a;
409 register int mix;
410 int uneven_w = width % 2;
411
412 for ( j = 0; j < width; j ++ )
413 {
414 a = *alpha_b ++ | *alpha_a;
415 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
416 mix = ( mix * a ) >> 8;
417 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
418 dest++;
419 *dest = ( *( src ++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
420 dest++;
421 *alpha_a = mix | *alpha_a;
422 alpha_a ++;
423 }
424
425 if ( uneven_w )
426 {
427 a = *alpha_b ++ | *alpha_a;
428 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
429 mix = ( mix * a ) >> 8;
430 *dest = ( *( src ++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
431 dest++;
432 *alpha_a = mix | *alpha_a;
433 alpha_a ++;
434 }
435 }
436
437 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven_x )
438 {
439 register int j;
440 register int a;
441 register int mix;
442 int uneven_w = width % 2;
443
444 for ( j = 0; j < width; j ++ )
445 {
446 a = *alpha_b ++ & *alpha_a;
447 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
448 mix = ( mix * a ) >> 8;
449 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
450 dest++;
451 *dest = ( *( src ++ ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
452 dest++;
453 *alpha_a = mix | *alpha_a;
454 alpha_a ++;
455 }
456
457 if ( uneven_w )
458 {
459 a = *alpha_b ++ & *alpha_a;
460 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
461 mix = ( mix * a ) >> 8;
462 *dest = ( *src ++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
463 dest++;
464 *alpha_a = mix | *alpha_a;
465 alpha_a ++;
466 }
467 }
468
469 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness, int uneven_x )
470 {
471 register int j;
472 register int a;
473 register int mix;
474 int uneven_w = width % 2;
475
476 for ( j = 0; j < width; j ++ )
477 {
478 a = *alpha_b ++ ^ *alpha_a;
479 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
480 mix = ( mix * a ) >> 8;
481 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
482 dest++;
483 *dest = ( *( src ++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
484 dest++;
485 *alpha_a = mix | *alpha_a;
486 alpha_a ++;
487 }
488
489 if ( uneven_w )
490 {
491 a = *alpha_b ++ ^ *alpha_a;
492 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
493 mix = ( mix * a ) >> 8;
494 *dest = ( *( src ++ + uneven_x ) * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
495 dest++;
496 *alpha_a = mix | *alpha_a;
497 alpha_a ++;
498 }
499 }
500
501 /** Composite function.
502 */
503
504 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
505 {
506 int ret = 0;
507 int i;
508 int x_src = 0, y_src = 0;
509 int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 );
510 int step = ( field > -1 ) ? 2 : 1;
511 int bpp = 2;
512 int stride_src = width_src * bpp;
513 int stride_dest = width_dest * bpp;
514
515 // Adjust to consumer scale
516 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
517 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
518 int uneven_x = 2 * ( x % 2 );
519
520 // optimization points - no work to do
521 if ( width_src <= 0 || height_src <= 0 )
522 return ret;
523
524 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
525 return ret;
526
527 // crop overlay off the left edge of frame
528 if ( x < 0 )
529 {
530 x_src = -x;
531 width_src -= x_src;
532 x = 0;
533 }
534
535 // crop overlay beyond right edge of frame
536 if ( x + width_src > width_dest )
537 width_src = width_dest - x;
538
539 // crop overlay off the top edge of the frame
540 if ( y < 0 )
541 {
542 y_src = -y;
543 height_src -= y_src;
544 y = 0;
545 }
546
547 // crop overlay below bottom edge of frame
548 if ( y + height_src > height_dest )
549 height_src = height_dest - y;
550
551 // offset pointer into overlay buffer based on cropping
552 p_src += x_src * bpp + y_src * stride_src;
553
554 // offset pointer into frame buffer based upon positive coordinates only!
555 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
556
557 // offset pointer into alpha channel based upon cropping
558 alpha_b += x_src + y_src * stride_src / bpp;
559 alpha_a += x + y * stride_dest / bpp;
560
561 // offset pointer into luma channel based upon cropping
562 if ( p_luma )
563 p_luma += x_src + y_src * stride_src / bpp;
564
565 // Assuming lower field first
566 // Special care is taken to make sure the b_frame is aligned to the correct field.
567 // field 0 = lower field and y should be odd (y is 0-based).
568 // field 1 = upper field and y should be even.
569 if ( ( field > -1 ) && ( y % 2 == field ) )
570 {
571 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
572 p_dest += stride_dest;
573 else
574 p_dest -= stride_dest;
575 }
576
577 // On the second field, use the other lines from b_frame
578 if ( field == 1 )
579 {
580 p_src += stride_src;
581 alpha_b += stride_src / bpp;
582 alpha_a += stride_dest / bpp;
583 height_src--;
584 }
585
586 stride_src *= step;
587 stride_dest *= step;
588 int alpha_b_stride = stride_src / bpp;
589 int alpha_a_stride = stride_dest / bpp;
590
591 // Incorrect, but keeps noise away?
592 height_src --;
593
594 // now do the compositing only to cropped extents
595 for ( i = 0; i < height_src; i += step )
596 {
597 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, softness, uneven_x );
598
599 p_src += stride_src;
600 p_dest += stride_dest;
601 alpha_b += alpha_b_stride;
602 alpha_a += alpha_a_stride;
603 if ( p_luma )
604 p_luma += alpha_b_stride;
605 }
606
607 return ret;
608 }
609
610
611 /** Scale 16bit greyscale luma map using nearest neighbor.
612 */
613
614 static inline void
615 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
616 {
617 register int i, j;
618 register int x_step = ( src_width << 16 ) / dest_width;
619 register int y_step = ( src_height << 16 ) / dest_height;
620 register int x, y = 0;
621
622 for ( i = 0; i < dest_height; i++ )
623 {
624 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
625 x = 0;
626
627 for ( j = 0; j < dest_width; j++ )
628 {
629 *dest_buf++ = src[ x >> 16 ] ^ invert;
630 x += x_step;
631 }
632 y += y_step;
633 }
634 }
635
636 static uint16_t* get_luma( mlt_properties properties, int width, int height )
637 {
638 // The cached luma map information
639 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
640 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
641 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
642 int invert = mlt_properties_get_int( properties, "luma_invert" );
643
644 // If the filename property changed, reload the map
645 char *resource = mlt_properties_get( properties, "luma" );
646
647 char temp[ 512 ];
648
649 if ( luma_width == 0 || luma_height == 0 )
650 {
651 luma_width = width;
652 luma_height = height;
653 }
654
655 if ( resource != NULL && strchr( resource, '%' ) )
656 {
657 // TODO: Clean up quick and dirty compressed/existence check
658 FILE *test;
659 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
660 test = fopen( temp, "r" );
661 if ( test == NULL )
662 strcat( temp, ".png" );
663 else
664 fclose( test );
665 resource = temp;
666 }
667
668 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
669 {
670 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
671 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
672 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
673
674 // Load the original luma once
675 if ( orig_bitmap == NULL )
676 {
677 char *extension = strrchr( resource, '.' );
678
679 // See if it is a PGM
680 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
681 {
682 // Open PGM
683 FILE *f = fopen( resource, "r" );
684 if ( f != NULL )
685 {
686 // Load from PGM
687 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
688 fclose( f );
689
690 // Remember the original size for subsequent scaling
691 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
692 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
693 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
694 }
695 }
696 else
697 {
698 // Get the factory producer service
699 char *factory = mlt_properties_get( properties, "factory" );
700
701 // Create the producer
702 mlt_producer producer = mlt_factory_producer( factory, resource );
703
704 // If we have one
705 if ( producer != NULL )
706 {
707 // Get the producer properties
708 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
709
710 // Ensure that we loop
711 mlt_properties_set( producer_properties, "eof", "loop" );
712
713 // Now pass all producer. properties on the transition down
714 mlt_properties_pass( producer_properties, properties, "luma." );
715
716 // We will get the alpha frame from the producer
717 mlt_frame luma_frame = NULL;
718
719 // Get the luma frame
720 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
721 {
722 uint8_t *luma_image;
723 mlt_image_format luma_format = mlt_image_yuv422;
724
725 // Get image from the luma producer
726 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
727 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
728
729 // Generate the luma map
730 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
731 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
732
733 // Remember the original size for subsequent scaling
734 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
735 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
736 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
737
738 // Cleanup the luma frame
739 mlt_frame_close( luma_frame );
740 }
741
742 // Cleanup the luma producer
743 mlt_producer_close( producer );
744 }
745 }
746 }
747 // Scale luma map
748 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
749 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
750
751 // Remember the scaled luma size to prevent unnecessary scaling
752 mlt_properties_set_int( properties, "_luma.width", width );
753 mlt_properties_set_int( properties, "_luma.height", height );
754 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
755 }
756 return luma_bitmap;
757 }
758
759 /** Get the properly sized image from b_frame.
760 */
761
762 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
763 {
764 int ret = 0;
765 mlt_image_format format = mlt_image_yuv422;
766
767 // Get the properties objects
768 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
769 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
770
771 if ( mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
772 {
773 // Adjust b_frame pixel aspect
774 int normalised_width = geometry->item.w;
775 int normalised_height = geometry->item.h;
776 int real_width = get_value( b_props, "real_width", "width" );
777 int real_height = get_value( b_props, "real_height", "height" );
778 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
779 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
780 int scaled_width = ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width;
781 int scaled_height = real_height;
782
783 // Now ensure that our images fit in the normalised frame
784 if ( scaled_width > normalised_width )
785 {
786 scaled_height = scaled_height * normalised_width / scaled_width;
787 scaled_width = normalised_width;
788 }
789 if ( scaled_height > normalised_height )
790 {
791 scaled_width = scaled_width * normalised_height / scaled_height;
792 scaled_height = normalised_height;
793 }
794
795 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
796 // ????: Shouln't this be the default behaviour?
797 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
798 {
799 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height < normalised_width )
800 {
801 scaled_width = scaled_width * normalised_height / scaled_height;
802 scaled_height = normalised_height;
803 }
804 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
805 {
806 scaled_height = scaled_height * normalised_width / scaled_width;
807 scaled_width = normalised_width;
808 }
809 }
810
811 // Save the new scaled dimensions
812 geometry->sw = scaled_width;
813 geometry->sh = scaled_height;
814 }
815 else
816 {
817 geometry->sw = geometry->item.w;
818 geometry->sh = geometry->item.h;
819 }
820
821 // We want to ensure that we bypass resize now...
822 mlt_properties_set_int( b_props, "distort", 1 );
823
824 // Take into consideration alignment for optimisation
825 if ( !mlt_properties_get_int( properties, "titles" ) )
826 alignment_calculate( geometry );
827
828 // Adjust to consumer scale
829 *width = geometry->sw * *width / geometry->nw;
830 *height = geometry->sh * *height / geometry->nh;
831
832 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
833
834 return ret && image != NULL;
835 }
836
837
838 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
839 {
840 // Get the properties from the transition
841 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
842
843 // Get the properties from the frame
844 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
845
846 // Structures for geometry
847 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
848
849 // Obtain the normalised width and height from the a_frame
850 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
851 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
852
853 char *name = mlt_properties_get( properties, "_unique_id" );
854 char key[ 256 ];
855
856 sprintf( key, "%s.in", name );
857 if ( mlt_properties_get( a_props, key ) )
858 {
859 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
860 }
861 else
862 {
863 // Now parse the geometries
864 if ( start == NULL )
865 {
866 // Parse the transitions properties
867 start = transition_parse_keys( this, normalised_width, normalised_height );
868
869 // Assign to properties to ensure we get destroyed
870 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
871 }
872 else
873 {
874 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
875 double cycle = mlt_properties_get_double( properties, "cycle" );
876 if ( cycle > 1 )
877 length = cycle;
878 else if ( cycle > 0 )
879 length *= cycle;
880 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
881 }
882
883 // Do the calculation
884 geometry_calculate( this, result, position );
885
886 // Assign normalised info
887 result->nw = normalised_width;
888 result->nh = normalised_height;
889 }
890
891 // Now parse the alignment
892 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
893 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
894
895 return start;
896 }
897
898 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
899 {
900 uint8_t *end = src + length;
901 while ( src < end )
902 {
903 *dest ++ = *src ++;
904 *dest ++ = *src ++;
905 }
906 }
907
908 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
909 {
910 // Create a frame to return
911 mlt_frame b_frame = mlt_frame_init( );
912
913 // Get the properties of the a frame
914 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
915
916 // Get the properties of the b frame
917 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
918
919 // Get the position
920 int position = position_calculate( this, frame_position );
921
922 // Get the unique id of the transition
923 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
924 char key[ 256 ];
925
926 // Destination image
927 uint8_t *dest = NULL;
928
929 // Get the image and dimensions
930 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
931 int width = mlt_properties_get_int( a_props, "width" );
932 int height = mlt_properties_get_int( a_props, "height" );
933 int format = mlt_properties_get_int( a_props, "format" );
934
935 // Pointers for copy operation
936 uint8_t *p;
937
938 // Coordinates
939 int w = 0;
940 int h = 0;
941 int x = 0;
942 int y = 0;
943
944 int ss = 0;
945 int ds = 0;
946
947 // Will need to know region to copy
948 struct geometry_s result;
949
950 // Calculate the region now
951 composite_calculate( this, &result, a_frame, position );
952
953 // Need to scale down to actual dimensions
954 x = rint( 0.5 + result.item.x * width / result.nw );
955 y = rint( 0.5 + result.item.y * height / result.nh );
956 w = rint( 0.5 + result.item.w * width / result.nw );
957 h = rint( 0.5 + result.item.h * height / result.nh );
958
959 if ( x % 2 )
960 {
961 x --;
962 w ++;
963 }
964
965 // Store the key
966 sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
967 mlt_properties_parse( a_props, key );
968 sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
969 mlt_properties_parse( a_props, key );
970
971 ds = w * 2;
972 ss = width * 2;
973
974 // Now we need to create a new destination image
975 dest = mlt_pool_alloc( w * h * 2 );
976
977 // Assign to the new frame
978 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
979 mlt_properties_set_int( b_props, "width", w );
980 mlt_properties_set_int( b_props, "height", h );
981 mlt_properties_set_int( b_props, "format", format );
982
983 if ( y < 0 )
984 {
985 dest += ( ds * -y );
986 h += y;
987 y = 0;
988 }
989
990 if ( y + h > height )
991 h -= ( y + h - height );
992
993 if ( x < 0 )
994 {
995 dest += -x * 2;
996 w += x;
997 x = 0;
998 }
999
1000 if ( w > 0 && h > 0 )
1001 {
1002 // Copy the region of the image
1003 p = image + y * ss + x * 2;
1004
1005 while ( h -- )
1006 {
1007 inline_memcpy( dest, p, w * 2 );
1008 dest += ds;
1009 p += ss;
1010 }
1011 }
1012
1013 // Assign this position to the b frame
1014 mlt_frame_set_position( b_frame, frame_position );
1015 mlt_properties_set_int( b_props, "distort", 1 );
1016
1017 // Return the frame
1018 return b_frame;
1019 }
1020
1021 /** Get the image.
1022 */
1023
1024 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1025 {
1026 // Get the b frame from the stack
1027 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1028
1029 // Get the transition from the a frame
1030 mlt_transition this = mlt_frame_pop_service( a_frame );
1031
1032 // Get in and out
1033 double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
1034 int out = mlt_frame_pop_service_int( a_frame );
1035 int in = mlt_frame_pop_service_int( a_frame );
1036
1037 // Get the properties from the transition
1038 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1039
1040 // TODO: clean up always_active behaviour
1041 if ( mlt_properties_get_int( properties, "always_active" ) )
1042 {
1043 mlt_events_block( properties, properties );
1044 mlt_properties_set_int( properties, "in", in );
1045 mlt_properties_set_int( properties, "out", out );
1046 mlt_events_unblock( properties, properties );
1047 }
1048
1049 // This compositer is yuv422 only
1050 *format = mlt_image_yuv422;
1051
1052 if ( b_frame != NULL )
1053 {
1054 // Get the properties of the a frame
1055 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1056
1057 // Get the properties of the b frame
1058 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1059
1060 // Structures for geometry
1061 struct geometry_s result;
1062
1063 // Calculate the position
1064 double delta = delta_calculate( this, a_frame, position );
1065
1066 // Get the image from the b frame
1067 uint8_t *image_b = NULL;
1068 int width_b = *width;
1069 int height_b = *height;
1070
1071 // Vars for alphas
1072 uint8_t *alpha_a = NULL;
1073 uint8_t *alpha_b = NULL;
1074
1075 // Composites always need scaling... defaulting to lowest
1076 char *rescale = mlt_properties_get( a_props, "rescale.interp" );
1077 if ( rescale == NULL || !strcmp( rescale, "none" ) )
1078 rescale = "nearest";
1079 mlt_properties_set( a_props, "rescale.interp", rescale );
1080 mlt_properties_set( b_props, "rescale.interp", rescale );
1081
1082 // Do the calculation
1083 // NB: Locks needed here since the properties are being modified
1084 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1085 composite_calculate( this, &result, a_frame, position );
1086 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1087
1088 // Since we are the consumer of the b_frame, we must pass along these
1089 // consumer properties from the a_frame
1090 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
1091 mlt_properties_set( b_props, "consumer_deinterlace_method", mlt_properties_get( a_props, "consumer_deinterlace_method" ) );
1092 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1093
1094 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1095 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
1096 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1097 {
1098 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1099 if ( !mlt_frame_is_test_card( a_frame ) )
1100 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1101 return 0;
1102 }
1103
1104 if ( a_frame == b_frame )
1105 {
1106 double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1107 get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1108 alpha_b = mlt_frame_get_alpha_mask( b_frame );
1109 mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1110 }
1111
1112 // Get the image from the a frame
1113 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1114 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1115
1116 // Optimisation - no compositing required
1117 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1118 return 0;
1119
1120 // Need to keep the width/height of the a_frame on the b_frame for titling
1121 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1122 {
1123 mlt_properties_set_int( a_props, "dest_width", *width );
1124 mlt_properties_set_int( a_props, "dest_height", *height );
1125 mlt_properties_set_int( b_props, "dest_width", *width );
1126 mlt_properties_set_int( b_props, "dest_height", *height );
1127 }
1128 else
1129 {
1130 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1131 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1132 }
1133
1134 // Special case for titling...
1135 if ( mlt_properties_get_int( properties, "titles" ) )
1136 {
1137 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1138 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1139 width_b = mlt_properties_get_int( a_props, "dest_width" );
1140 height_b = mlt_properties_get_int( a_props, "dest_height" );
1141 }
1142
1143 if ( *image != image_b && ( image_b != NULL || get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) )
1144 {
1145 uint8_t *dest = *image;
1146 uint8_t *src = image_b;
1147 int progressive =
1148 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1149 mlt_properties_get_int( properties, "progressive" );
1150 int field;
1151
1152 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1153 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1154 char *operator = mlt_properties_get( properties, "operator" );
1155
1156 alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1157
1158 composite_line_fn line_fn = composite_line_yuv;
1159
1160 // Replacement and override
1161 if ( operator != NULL )
1162 {
1163 if ( !strcmp( operator, "or" ) )
1164 line_fn = composite_line_yuv_or;
1165 if ( !strcmp( operator, "and" ) )
1166 line_fn = composite_line_yuv_and;
1167 if ( !strcmp( operator, "xor" ) )
1168 line_fn = composite_line_yuv_xor;
1169 }
1170
1171 // Allow the user to completely obliterate the alpha channels from both frames
1172 if ( mlt_properties_get( properties, "alpha_a" ) )
1173 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1174
1175 if ( mlt_properties_get( properties, "alpha_b" ) )
1176 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1177
1178 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1179 {
1180 // Assume lower field (0) first
1181 double field_position = position + field * delta;
1182
1183 // Do the calculation if we need to
1184 // NB: Locks needed here since the properties are being modified
1185 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1186 composite_calculate( this, &result, a_frame, field_position );
1187 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1188
1189 if ( mlt_properties_get_int( properties, "titles" ) )
1190 {
1191 result.item.w = *width * ( result.item.w / result.nw );
1192 result.nw = result.item.w;
1193 result.item.h = *height * ( result.item.h / result.nh );
1194 result.nh = *height;
1195 result.sw = width_b;
1196 result.sh = height_b;
1197 }
1198
1199 // Align
1200 alignment_calculate( &result );
1201
1202 // Composite the b_frame on the a_frame
1203 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1204 }
1205 }
1206 }
1207 else
1208 {
1209 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1210 }
1211
1212 return 0;
1213 }
1214
1215 /** Composition transition processing.
1216 */
1217
1218 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1219 {
1220 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1221 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1222 {
1223 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1224 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1225 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1226 }
1227 else
1228 {
1229 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1230 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1231 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1232 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1233 }
1234
1235 mlt_frame_push_service( a_frame, this );
1236 mlt_frame_push_frame( a_frame, b_frame );
1237 mlt_frame_push_get_image( a_frame, transition_get_image );
1238 return a_frame;
1239 }
1240
1241 /** Constructor for the filter.
1242 */
1243
1244 mlt_transition transition_composite_init( char *arg )
1245 {
1246 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1247 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1248 {
1249 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1250
1251 this->process = composite_process;
1252
1253 // Default starting motion and zoom
1254 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1255
1256 // Default factory
1257 mlt_properties_set( properties, "factory", "fezzik" );
1258
1259 // Inform apps and framework that this is a video only transition
1260 mlt_properties_set_int( properties, "_transition_type", 1 );
1261
1262 #ifdef USE_MMX
1263 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1264 #endif
1265 }
1266 return this;
1267 }