Sundry minor fixes and optimisations
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 struct mlt_geometry_item_s item;
44 int nw; // normalised width
45 int nh; // normalised height
46 int sw; // scaled width, not including consumer scale based upon w/nw
47 int sh; // scaled height, not including consumer scale based upon h/nh
48 int halign; // horizontal alignment: 0=left, 1=center, 2=right
49 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
50 };
51
52 /** Parse the alignment properties into the geometry.
53 */
54
55 static int alignment_parse( char* align )
56 {
57 int ret = 0;
58
59 if ( align == NULL );
60 else if ( isdigit( align[ 0 ] ) )
61 ret = atoi( align );
62 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
63 ret = 1;
64 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
65 ret = 2;
66
67 return ret;
68 }
69
70 /** Calculate real geometry.
71 */
72
73 static void geometry_calculate( mlt_transition this, struct geometry_s *output, float position )
74 {
75 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
76 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
77 int length = mlt_geometry_get_length( geometry );
78
79 // Allow wrapping
80 if ( position >= length && length != 0 )
81 {
82 int section = position / length;
83 position -= section * length;
84 if ( section % 2 == 1 )
85 position = length - position;
86 }
87
88 // Fetch the key for the position
89 mlt_geometry_fetch( geometry, &output->item, position );
90 }
91
92 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
93 {
94 // Loop variable for property interrogation
95 int i = 0;
96
97 // Get the properties of the transition
98 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
99
100 // Create an empty geometries object
101 mlt_geometry geometry = mlt_geometry_init( );
102
103 // Get the in and out position
104 mlt_position in = mlt_transition_get_in( this );
105 mlt_position out = mlt_transition_get_out( this );
106 int length = out - in + 1;
107
108 // Get the new style geometry string
109 char *property = mlt_properties_get( properties, "geometry" );
110
111 // Allow a geometry repeat cycle
112 if ( mlt_properties_get_int( properties, "cycle" ) )
113 length = mlt_properties_get_int( properties, "cycle" );
114
115 // Parse the geometry if we have one
116 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
117
118 // Check if we're using the old style geometry
119 if ( property == NULL )
120 {
121 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
122 // practical use - while deprecated, it has been slightly extended too - keys can now
123 // be specified out of order, and can be blanked or NULL to simulate removal
124
125 // Structure to use for parsing and inserting
126 struct mlt_geometry_item_s item;
127
128 // Parse the start property
129 item.frame = 0;
130 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
131 mlt_geometry_insert( geometry, &item );
132
133 // Parse the keys in between
134 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
135 {
136 // Get the name of the property
137 char *name = mlt_properties_get_name( properties, i );
138
139 // Check that it's valid
140 if ( !strncmp( name, "key[", 4 ) )
141 {
142 // Get the value of the property
143 char *value = mlt_properties_get_value( properties, i );
144
145 // Determine the frame number
146 item.frame = atoi( name + 4 );
147
148 // Parse and add to the list
149 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
150 mlt_geometry_insert( geometry, &item );
151 else
152 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
153 }
154 }
155
156 // Parse the end
157 item.frame = -1;
158 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
159 mlt_geometry_insert( geometry, &item );
160 }
161
162 return geometry;
163 }
164
165 /** Adjust position according to scaled size and alignment properties.
166 */
167
168 static void alignment_calculate( struct geometry_s *geometry )
169 {
170 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
171 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
172 }
173
174 /** Calculate the position for this frame.
175 */
176
177 static int position_calculate( mlt_transition this, mlt_position position )
178 {
179 // Get the in and out position
180 mlt_position in = mlt_transition_get_in( this );
181
182 // Now do the calcs
183 return position - in;
184 }
185
186 /** Calculate the field delta for this frame - position between two frames.
187 */
188
189 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
190 {
191 // Get the in and out position
192 mlt_position in = mlt_transition_get_in( this );
193 mlt_position out = mlt_transition_get_out( this );
194 float length = out - in + 1;
195
196 // Get the position of the frame
197 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
198 mlt_position position = mlt_properties_get_position( MLT_FRAME_PROPERTIES( frame ), name );
199
200 // Now do the calcs
201 float x = ( float )( position - in ) / length;
202 float y = ( float )( position + 1 - in ) / length;
203
204 return length * ( y - x ) / 2.0;
205 }
206
207 static int get_value( mlt_properties properties, char *preferred, char *fallback )
208 {
209 int value = mlt_properties_get_int( properties, preferred );
210 if ( value == 0 )
211 value = mlt_properties_get_int( properties, fallback );
212 return value;
213 }
214
215 /** A linear threshold determination function.
216 */
217
218 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
219 {
220 if ( a < edge1 )
221 return 0;
222
223 if ( a >= edge2 )
224 return 0x10000;
225
226 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
227 }
228
229 /** A smoother, non-linear threshold determination function.
230 */
231
232 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
233 {
234 if ( a < edge1 )
235 return 0;
236
237 if ( a >= edge2 )
238 return 0x10000;
239
240 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
241
242 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
243 }
244
245 /** Load the luma map from PGM stream.
246 */
247
248 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
249 {
250 uint8_t *data = NULL;
251 while (1)
252 {
253 char line[128];
254 char comment[128];
255 int i = 2;
256 int maxval;
257 int bpp;
258 uint16_t *p;
259
260 line[127] = '\0';
261
262 // get the magic code
263 if ( fgets( line, 127, f ) == NULL )
264 break;
265
266 // skip comments
267 while ( sscanf( line, " #%s", comment ) > 0 )
268 if ( fgets( line, 127, f ) == NULL )
269 break;
270
271 if ( line[0] != 'P' || line[1] != '5' )
272 break;
273
274 // skip white space and see if a new line must be fetched
275 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
276 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
277 break;
278
279 // skip comments
280 while ( sscanf( line, " #%s", comment ) > 0 )
281 if ( fgets( line, 127, f ) == NULL )
282 break;
283
284 // get the dimensions
285 if ( line[0] == 'P' )
286 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
287 else
288 i = sscanf( line, "%d %d %d", width, height, &maxval );
289
290 // get the height value, if not yet
291 if ( i < 2 )
292 {
293 if ( fgets( line, 127, f ) == NULL )
294 break;
295
296 // skip comments
297 while ( sscanf( line, " #%s", comment ) > 0 )
298 if ( fgets( line, 127, f ) == NULL )
299 break;
300
301 i = sscanf( line, "%d", height );
302 if ( i == 0 )
303 break;
304 else
305 i = 2;
306 }
307
308 // get the maximum gray value, if not yet
309 if ( i < 3 )
310 {
311 if ( fgets( line, 127, f ) == NULL )
312 break;
313
314 // skip comments
315 while ( sscanf( line, " #%s", comment ) > 0 )
316 if ( fgets( line, 127, f ) == NULL )
317 break;
318
319 i = sscanf( line, "%d", &maxval );
320 if ( i == 0 )
321 break;
322 }
323
324 // determine if this is one or two bytes per pixel
325 bpp = maxval > 255 ? 2 : 1;
326
327 // allocate temporary storage for the raw data
328 data = mlt_pool_alloc( *width * *height * bpp );
329 if ( data == NULL )
330 break;
331
332 // read the raw data
333 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
334 break;
335
336 // allocate the luma bitmap
337 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
338 if ( *map == NULL )
339 break;
340
341 // proces the raw data into the luma bitmap
342 for ( i = 0; i < *width * *height * bpp; i += bpp )
343 {
344 if ( bpp == 1 )
345 *p++ = data[ i ] << 8;
346 else
347 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
348 }
349
350 break;
351 }
352
353 if ( data != NULL )
354 mlt_pool_release( data );
355 }
356
357 /** Generate a luma map from any YUV image.
358 */
359
360 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
361 {
362 int i;
363
364 // allocate the luma bitmap
365 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
366 if ( *map == NULL )
367 return;
368
369 // proces the image data into the luma bitmap
370 for ( i = 0; i < width * height * 2; i += 2 )
371 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
372 }
373
374
375 /** Composite a source line over a destination line
376 */
377
378 static inline
379 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
380 {
381 register int j;
382 int a, mix;
383
384 for ( j = 0; j < width_src; j ++ )
385 {
386 a = ( alpha == NULL ) ? 255 : *alpha ++;
387 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
388 mix = ( mix * a ) >> 8;
389 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
390 dest++;
391 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
392 dest++;
393 }
394 }
395
396 /** Composite function.
397 */
398
399 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
400 {
401 int ret = 0;
402 int i;
403 int x_src = 0, y_src = 0;
404 int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 );
405 int step = ( field > -1 ) ? 2 : 1;
406 int bpp = 2;
407 int stride_src = width_src * bpp;
408 int stride_dest = width_dest * bpp;
409
410 // Adjust to consumer scale
411 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
412 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
413 int x_uneven = x & 1;
414
415 // optimization points - no work to do
416 if ( width_src <= 0 || height_src <= 0 )
417 return ret;
418
419 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
420 return ret;
421
422 // crop overlay off the left edge of frame
423 if ( x < 0 )
424 {
425 x_src = -x;
426 width_src -= x_src;
427 x = 0;
428 }
429
430 // crop overlay beyond right edge of frame
431 if ( x + width_src > width_dest )
432 width_src = width_dest - x;
433
434 // crop overlay off the top edge of the frame
435 if ( y < 0 )
436 {
437 y_src = -y;
438 height_src -= y_src;
439 y = 0;
440 }
441
442 // crop overlay below bottom edge of frame
443 if ( y + height_src > height_dest )
444 height_src = height_dest - y;
445
446 // offset pointer into overlay buffer based on cropping
447 p_src += x_src * bpp + y_src * stride_src;
448
449 // offset pointer into frame buffer based upon positive coordinates only!
450 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
451
452 // offset pointer into alpha channel based upon cropping
453 if ( p_alpha )
454 p_alpha += x_src + y_src * stride_src / bpp;
455
456 // offset pointer into luma channel based upon cropping
457 if ( p_luma )
458 p_luma += x_src + y_src * stride_src / bpp;
459
460 // Assuming lower field first
461 // Special care is taken to make sure the b_frame is aligned to the correct field.
462 // field 0 = lower field and y should be odd (y is 0-based).
463 // field 1 = upper field and y should be even.
464 if ( ( field > -1 ) && ( y % 2 == field ) )
465 {
466 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
467 p_dest += stride_dest;
468 else
469 p_dest -= stride_dest;
470 }
471
472 // On the second field, use the other lines from b_frame
473 if ( field == 1 )
474 {
475 p_src += stride_src;
476 if ( p_alpha )
477 p_alpha += stride_src / bpp;
478 height_src--;
479 }
480
481 stride_src *= step;
482 stride_dest *= step;
483 int alpha_stride = stride_src / bpp;
484
485 // Make sure than x and w are even
486 if ( x_uneven )
487 {
488 p_src += 2;
489 width_src --;
490 }
491
492 // now do the compositing only to cropped extents
493 if ( line_fn != NULL )
494 {
495 for ( i = 0; i < height_src; i += step )
496 {
497 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
498
499 p_src += stride_src;
500 p_dest += stride_dest;
501 if ( p_alpha )
502 p_alpha += alpha_stride;
503 if ( p_luma )
504 p_luma += alpha_stride;
505 }
506 }
507 else
508 {
509 for ( i = 0; i < height_src; i += step )
510 {
511 composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
512
513 p_src += stride_src;
514 p_dest += stride_dest;
515 if ( p_alpha )
516 p_alpha += alpha_stride;
517 if ( p_luma )
518 p_luma += alpha_stride;
519 }
520 }
521
522 return ret;
523 }
524
525
526 /** Scale 16bit greyscale luma map using nearest neighbor.
527 */
528
529 static inline void
530 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
531 {
532 register int i, j;
533 register int x_step = ( src_width << 16 ) / dest_width;
534 register int y_step = ( src_height << 16 ) / dest_height;
535 register int x, y = 0;
536
537 for ( i = 0; i < dest_height; i++ )
538 {
539 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
540 x = 0;
541
542 for ( j = 0; j < dest_width; j++ )
543 {
544 *dest_buf++ = src[ x >> 16 ] ^ invert;
545 x += x_step;
546 }
547 y += y_step;
548 }
549 }
550
551 static uint16_t* get_luma( mlt_properties properties, int width, int height )
552 {
553 // The cached luma map information
554 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
555 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
556 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
557 int invert = mlt_properties_get_int( properties, "luma_invert" );
558
559 // If the filename property changed, reload the map
560 char *resource = mlt_properties_get( properties, "luma" );
561
562 char temp[ 512 ];
563
564 if ( resource != NULL && strchr( resource, '%' ) )
565 {
566 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
567 resource = temp;
568 }
569
570 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
571 {
572 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
573 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
574 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
575
576 // Load the original luma once
577 if ( orig_bitmap == NULL )
578 {
579 char *extension = extension = strrchr( resource, '.' );
580
581 // See if it is a PGM
582 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
583 {
584 // Open PGM
585 FILE *f = fopen( resource, "r" );
586 if ( f != NULL )
587 {
588 // Load from PGM
589 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
590 fclose( f );
591
592 // Remember the original size for subsequent scaling
593 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
594 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
595 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
596 }
597 }
598 else
599 {
600 // Get the factory producer service
601 char *factory = mlt_properties_get( properties, "factory" );
602
603 // Create the producer
604 mlt_producer producer = mlt_factory_producer( factory, resource );
605
606 // If we have one
607 if ( producer != NULL )
608 {
609 // Get the producer properties
610 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
611
612 // Ensure that we loop
613 mlt_properties_set( producer_properties, "eof", "loop" );
614
615 // Now pass all producer. properties on the transition down
616 mlt_properties_pass( producer_properties, properties, "luma." );
617
618 // We will get the alpha frame from the producer
619 mlt_frame luma_frame = NULL;
620
621 // Get the luma frame
622 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
623 {
624 uint8_t *luma_image;
625 mlt_image_format luma_format = mlt_image_yuv422;
626
627 // Get image from the luma producer
628 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
629 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
630
631 // Generate the luma map
632 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
633 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
634
635 // Remember the original size for subsequent scaling
636 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
637 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
638 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
639
640 // Cleanup the luma frame
641 mlt_frame_close( luma_frame );
642 }
643
644 // Cleanup the luma producer
645 mlt_producer_close( producer );
646 }
647 }
648 }
649 // Scale luma map
650 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
651 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
652
653 // Remember the scaled luma size to prevent unnecessary scaling
654 mlt_properties_set_int( properties, "_luma.width", width );
655 mlt_properties_set_int( properties, "_luma.height", height );
656 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
657 }
658 return luma_bitmap;
659 }
660
661 /** Get the properly sized image from b_frame.
662 */
663
664 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
665 {
666 int ret = 0;
667 mlt_image_format format = mlt_image_yuv422;
668
669 // Get the properties objects
670 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
671 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
672
673 if ( mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
674 {
675 // Adjust b_frame pixel aspect
676 int normalised_width = geometry->item.w;
677 int normalised_height = geometry->item.h;
678 int real_width = get_value( b_props, "real_width", "width" );
679 int real_height = get_value( b_props, "real_height", "height" );
680 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
681 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
682 int scaled_width = input_ar / output_ar * real_width;
683 int scaled_height = real_height;
684
685 // Now ensure that our images fit in the normalised frame
686 if ( scaled_width > normalised_width )
687 {
688 scaled_height = scaled_height * normalised_width / scaled_width;
689 scaled_width = normalised_width;
690 }
691 if ( scaled_height > normalised_height )
692 {
693 scaled_width = scaled_width * normalised_height / scaled_height;
694 scaled_height = normalised_height;
695 }
696
697 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
698 // ????: Shouln't this be the default behaviour?
699 if ( mlt_properties_get_int( properties, "fill" ) )
700 {
701 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height < normalised_width )
702 {
703 scaled_width = scaled_width * normalised_height / scaled_height;
704 scaled_height = normalised_height;
705 }
706 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
707 {
708 scaled_height = scaled_height * normalised_width / scaled_width;
709 scaled_width = normalised_width;
710 }
711 }
712
713 // Save the new scaled dimensions
714 geometry->sw = scaled_width;
715 geometry->sh = scaled_height;
716 }
717 else
718 {
719 geometry->sw = geometry->item.w;
720 geometry->sh = geometry->item.h;
721 }
722
723 // We want to ensure that we bypass resize now...
724 mlt_properties_set_int( b_props, "distort", 1 );
725
726 // Take into consideration alignment for optimisation
727 if ( !mlt_properties_get_int( properties, "titles" ) )
728 alignment_calculate( geometry );
729
730 // Adjust to consumer scale
731 int x = geometry->item.x * *width / geometry->nw;
732 int y = geometry->item.y * *height / geometry->nh;
733 *width = geometry->sw * *width / geometry->nw;
734 *height = geometry->sh * *height / geometry->nh;
735
736 //x = ( x | 1 ) ^ 1;
737
738 // optimization points - no work to do
739 if ( *width < 1 || *height < 1 )
740 return 1;
741
742 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
743 return 1;
744
745 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
746
747 return ret;
748 }
749
750
751 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, float position )
752 {
753 // Get the properties from the transition
754 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
755
756 // Get the properties from the frame
757 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
758
759 // Structures for geometry
760 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
761
762 // Obtain the normalised width and height from the a_frame
763 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
764 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
765
766 // Now parse the geometries
767 if ( start == NULL )
768 {
769 // Parse the transitions properties
770 start = transition_parse_keys( this, normalised_width, normalised_height );
771
772 // Assign to properties to ensure we get destroyed
773 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
774 }
775 else
776 {
777 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
778 if ( mlt_properties_get_int( properties, "cycle" ) )
779 length = mlt_properties_get_int( properties, "cycle" );
780 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
781 }
782
783 // Do the calculation
784 geometry_calculate( this, result, position );
785
786 // Assign normalised info
787 result->nw = normalised_width;
788 result->nh = normalised_height;
789
790 // Now parse the alignment
791 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
792 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
793
794 return start;
795 }
796
797 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
798 {
799 uint8_t *end = src + length;
800 while ( src < end )
801 {
802 *dest ++ = *src ++;
803 *dest ++ = *src ++;
804 }
805 }
806
807 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
808 {
809 // Create a frame to return
810 mlt_frame b_frame = mlt_frame_init( );
811
812 // Get the properties of the a frame
813 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
814
815 // Get the properties of the b frame
816 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
817
818 // Get the position
819 int position = position_calculate( this, frame_position );
820
821 // Destination image
822 uint8_t *dest = NULL;
823
824 // Get the image and dimensions
825 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
826 int width = mlt_properties_get_int( a_props, "width" );
827 int height = mlt_properties_get_int( a_props, "height" );
828
829 // Pointers for copy operation
830 uint8_t *p;
831
832 // Coordinates
833 int w = 0;
834 int h = 0;
835 int x = 0;
836 int y = 0;
837
838 int ss = 0;
839 int ds = 0;
840
841 // Will need to know region to copy
842 struct geometry_s result;
843
844 float delta = delta_calculate( this, a_frame );
845
846 // Calculate the region now
847 composite_calculate( this, &result, a_frame, position + delta / 2 );
848
849 // Need to scale down to actual dimensions
850 x = rint( 0.5 + result.item.x * width / result.nw );
851 y = rint( 0.5 + result.item.y * height / result.nh );
852 w = rint( 0.5 + result.item.w * width / result.nw );
853 h = rint( 0.5 + result.item.h * height / result.nh );
854
855 // Make sure that x and w are even
856 if ( x & 1 )
857 {
858 x --;
859 w += 2;
860 if ( w & 1 )
861 w --;
862 }
863 else if ( w & 1 )
864 {
865 w ++;
866 }
867
868 ds = w * 2;
869 ss = width * 2;
870
871 // Now we need to create a new destination image
872 dest = mlt_pool_alloc( w * h * 2 );
873
874 // Assign to the new frame
875 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
876 mlt_properties_set_int( b_props, "width", w );
877 mlt_properties_set_int( b_props, "height", h );
878
879 if ( y < 0 )
880 {
881 dest += ( ds * -y );
882 h += y;
883 y = 0;
884 }
885
886 if ( y + h > height )
887 h -= ( y + h - height );
888
889 if ( x < 0 )
890 {
891 dest += -x * 2;
892 w += x;
893 x = 0;
894 }
895
896 if ( w > 0 && h > 0 )
897 {
898 // Copy the region of the image
899 p = image + y * ss + x * 2;
900
901 while ( h -- )
902 {
903 inline_memcpy( dest, p, w * 2 );
904 dest += ds;
905 p += ss;
906 }
907 }
908
909 // Assign this position to the b frame
910 mlt_frame_set_position( b_frame, frame_position );
911 mlt_properties_set_int( b_props, "distort", 1 );
912
913 // Return the frame
914 return b_frame;
915 }
916
917 /** Get the image.
918 */
919
920 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
921 {
922 // Get the b frame from the stack
923 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
924
925 // Get the transition from the a frame
926 mlt_transition this = mlt_frame_pop_service( a_frame );
927
928 // This compositer is yuv422 only
929 *format = mlt_image_yuv422;
930
931 // Get the image from the a frame
932 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
933
934 // Get the properties from the transition
935 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
936
937 if ( b_frame != NULL )
938 {
939 // Get the properties of the a frame
940 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
941
942 // Get the properties of the b frame
943 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
944
945 // Structures for geometry
946 struct geometry_s result;
947
948 // Calculate the position
949 float position = mlt_properties_get_double( b_props, "relative_position" );
950 float delta = delta_calculate( this, a_frame );
951
952 // Get the image from the b frame
953 uint8_t *image_b = NULL;
954 int width_b = *width;
955 int height_b = *height;
956
957 // Do the calculation
958 composite_calculate( this, &result, a_frame, position );
959
960 // Optimisation - no compositing required
961 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
962 return 0;
963
964 // Need to keep the width/height of the a_frame on the b_frame for titling
965 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
966 {
967 mlt_properties_set_int( a_props, "dest_width", *width );
968 mlt_properties_set_int( a_props, "dest_height", *height );
969 mlt_properties_set_int( b_props, "dest_width", *width );
970 mlt_properties_set_int( b_props, "dest_height", *height );
971 }
972 else
973 {
974 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
975 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
976 }
977
978 // Since we are the consumer of the b_frame, we must pass along these
979 // consumer properties from the a_frame
980 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
981 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
982 mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) );
983 mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) );
984
985 // Special case for titling...
986 if ( mlt_properties_get_int( properties, "titles" ) )
987 {
988 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
989 mlt_properties_set( b_props, "rescale.interp", "hyper" );
990 width_b = mlt_properties_get_int( a_props, "dest_width" );
991 height_b = mlt_properties_get_int( a_props, "dest_height" );
992 }
993
994 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
995 {
996 uint8_t *dest = *image;
997 uint8_t *src = image_b;
998 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
999 int progressive =
1000 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1001 mlt_properties_get_int( properties, "progressive" );
1002 int field;
1003
1004 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1005 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1006 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
1007 composite_line_fn line_fn = NULL;
1008
1009 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1010 {
1011 // Assume lower field (0) first
1012 float field_position = position + field * delta;
1013
1014 // Do the calculation if we need to
1015 composite_calculate( this, &result, a_frame, field_position );
1016
1017 if ( mlt_properties_get_int( properties, "titles" ) )
1018 {
1019 result.item.w = *width * ( result.item.w / result.nw );
1020 result.nw = result.item.w;
1021 result.item.h = *height * ( result.item.h / result.nh );
1022 result.nh = *height;
1023 result.sw = width_b;
1024 result.sh = height_b;
1025 }
1026
1027 // Align
1028 alignment_calculate( &result );
1029
1030 // Composite the b_frame on the a_frame
1031 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1032 }
1033 }
1034 }
1035
1036 return 0;
1037 }
1038
1039 /** Composition transition processing.
1040 */
1041
1042 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1043 {
1044 // Get a unique name to store the frame position
1045 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
1046
1047 // Assign the current position to the name
1048 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_frame_get_position( a_frame ) );
1049
1050 // Propogate the transition properties to the b frame
1051 mlt_properties_set_double( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1052
1053 mlt_frame_push_service( a_frame, this );
1054 mlt_frame_push_frame( a_frame, b_frame );
1055 mlt_frame_push_get_image( a_frame, transition_get_image );
1056 return a_frame;
1057 }
1058
1059 /** Constructor for the filter.
1060 */
1061
1062 mlt_transition transition_composite_init( char *arg )
1063 {
1064 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1065 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1066 {
1067 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1068
1069 this->process = composite_process;
1070
1071 // Default starting motion and zoom
1072 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1073
1074 // Default factory
1075 mlt_properties_set( properties, "factory", "fezzik" );
1076
1077 #ifdef USE_MMX
1078 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1079 #endif
1080 }
1081 return this;
1082 }