2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include "transition_composite.h"
22 #include <framework/mlt_frame.h>
39 /** Parse a geometry property string.
42 static void geometry_parse( struct geometry_s
*geometry
, struct geometry_s
*defaults
, char *property
)
44 // Assign from defaults if available
45 if ( defaults
!= NULL
)
47 geometry
->x
= defaults
->x
;
48 geometry
->y
= defaults
->y
;
49 geometry
->w
= defaults
->w
;
50 geometry
->h
= defaults
->h
;
51 geometry
->mix
= defaults
->mix
;
58 // Parse the geomtry string
59 if ( property
!= NULL
)
60 sscanf( property
, "%f,%f:%fx%f:%f", &geometry
->x
, &geometry
->y
, &geometry
->w
, &geometry
->h
, &geometry
->mix
);
63 /** Calculate real geometry.
66 static void geometry_calculate( struct geometry_s
*output
, struct geometry_s
*in
, struct geometry_s
*out
, float position
)
68 // Calculate this frames geometry
69 output
->x
= in
->x
+ ( out
->x
- in
->x
) * position
;
70 output
->y
= in
->y
+ ( out
->y
- in
->y
) * position
;
71 output
->w
= in
->w
+ ( out
->w
- in
->w
) * position
;
72 output
->h
= in
->h
+ ( out
->h
- in
->h
) * position
;
73 output
->mix
= in
->mix
+ ( out
->mix
- in
->mix
) * position
;
76 /** Calculate the position for this frame.
79 static float position_calculate( mlt_transition
this, mlt_frame frame
)
81 // Get the in and out position
82 mlt_position in
= mlt_transition_get_in( this );
83 mlt_position out
= mlt_transition_get_out( this );
85 // Get the position of the frame
86 mlt_position position
= mlt_frame_get_position( frame
);
89 return ( float )( position
- in
) / ( float )( out
- in
+ 1 );
92 /** Composite function.
95 static int composite_yuv( uint8_t *p_dest
, mlt_image_format format_dest
, int width_dest
, int height_dest
, mlt_frame that
, struct geometry_s geometry
)
102 int x_src
= 0, y_src
= 0;
104 mlt_image_format format_src
= format_dest
;
105 int x
= ( int )( ( float )width_dest
* geometry
.x
/ 100 );
106 int y
= ( int )( ( float )height_dest
* geometry
.y
/ 100 );
107 float weight
= geometry
.mix
/ 100;
109 // Compute the dimensioning rectangle
110 int width_src
= ( int )( ( float )width_dest
* geometry
.w
/ 100 );
111 int height_src
= ( int )( ( float )height_dest
* geometry
.h
/ 100 );
113 mlt_properties b_props
= mlt_frame_properties( that
);
114 mlt_transition
this = mlt_properties_get_data( b_props
, "transition_composite", NULL
);
115 mlt_properties properties
= mlt_transition_properties( this );
117 if ( mlt_properties_get( properties
, "distort" ) == NULL
&&
118 mlt_properties_get( mlt_frame_properties( that
), "real_width" ) != NULL
)
120 int width_b
= mlt_properties_get_double( b_props
, "real_width" );
121 int height_b
= mlt_properties_get_double( b_props
, "real_height" );
123 // See if we need to normalise pixel aspect ratio
124 // We can use consumer_aspect_ratio because the a_frame will take on this aspect
125 double aspect
= mlt_properties_get_double( b_props
, "consumer_aspect_ratio" );
128 // Derive the consumer pixel aspect
129 double oaspect
= aspect
/ ( double )width_dest
* height_dest
;
131 // Get the b frame pixel aspect - usually 1
132 double iaspect
= mlt_properties_get_double( b_props
, "aspect_ratio" ) / width_b
* height_b
;
134 // Normalise pixel aspect
135 if ( iaspect
!= 0 && iaspect
!= oaspect
)
136 width_b
= iaspect
/ oaspect
* ( double )width_b
+ 0.5;
138 // Tell rescale not to normalise display aspect
139 mlt_frame_set_aspect_ratio( that
, aspect
);
142 // Constrain the overlay to the dimensioning rectangle
143 if ( width_b
< width_src
)
145 if ( height_b
< height_src
)
146 height_src
= height_b
;
148 // Adjust overall scale for consumer
149 double consumer_scale
= mlt_properties_get_double( b_props
, "consumer_scale" );
150 if ( consumer_scale
> 0 )
152 width_src
= consumer_scale
* width_src
+ 0.5;
153 height_src
= consumer_scale
* height_src
+ 0.5;
156 else if ( mlt_properties_get( b_props
, "real_width" ) != NULL
)
158 // Tell rescale not to normalise display aspect
159 mlt_properties_set_double( b_props
, "consumer_aspect_ratio", 0 );
164 // optimization points - no work to do
165 if ( width_src
<= 0 || height_src
<= 0 )
168 if ( ( x
< 0 && -x
>= width_src
) || ( y
< 0 && -y
>= height_src
) )
171 format_src
= mlt_image_yuv422
;
172 format_dest
= mlt_image_yuv422
;
174 mlt_frame_get_image( that
, &p_src
, &format_src
, &width_src
, &height_src
, 1 /* writable */ );
176 stride_src
= width_src
* 2;
177 stride_dest
= width_dest
* 2;
179 // crop overlay off the left edge of frame
187 // crop overlay beyond right edge of frame
188 else if ( x
+ width_src
> width_dest
)
189 width_src
= width_dest
- x
;
191 // crop overlay off the top edge of the frame
197 // crop overlay below bottom edge of frame
198 else if ( y
+ height_src
> height_dest
)
199 height_src
= height_dest
- y
;
201 // offset pointer into overlay buffer based on cropping
202 p_src
+= x_src
* 2 + y_src
* stride_src
;
204 // offset pointer into frame buffer based upon positive, even coordinates only!
205 p_dest
+= ( x
< 0 ?
0 : x
) * 2 + ( y
< 0 ?
0 : y
) * stride_dest
;
207 // Get the alpha channel of the overlay
208 uint8_t *p_alpha
= mlt_frame_get_alpha_mask( that
);
210 // offset pointer into alpha channel based upon cropping
212 p_alpha
+= x_src
+ y_src
* stride_src
/ 2;
217 uint8_t *z
= p_alpha
;
224 // now do the compositing only to cropped extents
225 for ( i
= 0; i
< height_src
; i
++ )
232 for ( j
= 0; j
< width_src
; j
++ )
236 a
= ( z
== NULL
) ?
255 : *z
++;
237 value
= ( weight
* ( float ) a
/ 255.0 );
238 *o
++ = (uint8_t)( Y
* value
+ *q
++ * ( 1 - value
) );
239 *o
++ = (uint8_t)( UV
* value
+ *q
++ * ( 1 - value
) );
243 p_dest
+= stride_dest
;
245 p_alpha
+= stride_src
/ 2;
255 static int transition_get_image( mlt_frame a_frame
, uint8_t **image
, mlt_image_format
*format
, int *width
, int *height
, int writable
)
257 // Get the b frame from the stack
258 mlt_frame b_frame
= mlt_frame_pop_frame( a_frame
);
260 // Get the image from the a frame
261 mlt_frame_get_image( a_frame
, image
, format
, width
, height
, 1 );
263 if ( b_frame
!= NULL
)
265 // Get the properties of the b frame
266 mlt_properties b_props
= mlt_frame_properties( b_frame
);
268 // Get the transition from the b frame
269 mlt_transition
this = mlt_properties_get_data( b_props
, "transition_composite", NULL
);
271 // Get the properties from the transition
272 mlt_properties properties
= mlt_transition_properties( this );
274 // Structures for geometry
275 struct geometry_s result
;
276 struct geometry_s start
;
277 struct geometry_s end
;
279 // Calculate the position
280 float position
= position_calculate( this, a_frame
);
282 // Now parse the geometries
283 geometry_parse( &start
, NULL
, mlt_properties_get( properties
, "start" ) );
284 geometry_parse( &end
, &start
, mlt_properties_get( properties
, "end" ) );
286 // Do the calculation
287 geometry_calculate( &result
, &start
, &end
, position
);
289 // Since we are the consumer of the b_frame, we must pass along these
290 // consumer properties from the a_frame
291 mlt_properties_set_double( b_props
, "consumer_aspect_ratio",
292 mlt_properties_get_double( mlt_frame_properties( a_frame
), "consumer_aspect_ratio" ) );
293 mlt_properties_set_double( b_props
, "consumer_scale",
294 mlt_properties_get_double( mlt_frame_properties( a_frame
), "consumer_scale" ) );
296 // Composite the b_frame on the a_frame
297 composite_yuv( *image
, *format
, *width
, *height
, b_frame
, result
);
303 /** Composition transition processing.
306 static mlt_frame
composite_process( mlt_transition
this, mlt_frame a_frame
, mlt_frame b_frame
)
308 // Propogate the transition properties to the b frame
309 mlt_properties b_props
= mlt_frame_properties( b_frame
);
310 mlt_properties_set_data( b_props
, "transition_composite", this, 0, NULL
, NULL
);
311 mlt_frame_push_get_image( a_frame
, transition_get_image
);
312 mlt_frame_push_frame( a_frame
, b_frame
);
316 /** Constructor for the filter.
319 mlt_transition
transition_composite_init( char *arg
)
321 mlt_transition
this = calloc( sizeof( struct mlt_transition_s
), 1 );
322 if ( this != NULL
&& mlt_transition_init( this, NULL
) == 0 )
324 this->process
= composite_process
;
325 mlt_properties_set( mlt_transition_properties( this ), "start", arg
!= NULL ? arg
: "85,5:10x10" );
326 mlt_properties_set( mlt_transition_properties( this ), "end", "" );