e8f1235bbddf5a8feefead8c1a502fa27e7dd0cc
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt_frame.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28
29 /** Geometry struct.
30 */
31
32 struct geometry_s
33 {
34 float mix;
35 int nw; // normalised width
36 int nh; // normalised height
37 int sw; // scaled width, not including consumer scale based upon w/nw
38 int sh; // scaled height, not including consumer scale based upon h/nh
39 float x;
40 float y;
41 float w;
42 float h;
43 int halign; // horizontal alignment: 0=left, 1=center, 2=right
44 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
45 };
46
47 /** Parse a value from a geometry string.
48 */
49
50 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
51 {
52 float value = defaults;
53
54 if ( *ptr != NULL && **ptr != '\0' )
55 {
56 char *end = NULL;
57 value = strtod( *ptr, &end );
58 if ( end != NULL )
59 {
60 if ( *end == '%' )
61 value = ( value / 100.0 ) * normalisation;
62 while ( *end == delim || *end == '%' )
63 end ++;
64 }
65 *ptr = end;
66 }
67
68 return value;
69 }
70
71 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
72 expressed as a percentage by appending a % after the value, otherwise values are
73 assumed to be relative to the normalised dimensions of the consumer.
74 */
75
76 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
77 {
78 memset( geometry, 0, sizeof( struct geometry_s ) );
79
80 // Assign normalised width and height
81 geometry->nw = nw;
82 geometry->nh = nh;
83
84 // Assign from defaults if available
85 if ( defaults != NULL )
86 {
87 geometry->x = defaults->x;
88 geometry->y = defaults->y;
89 geometry->w = geometry->sw = defaults->w;
90 geometry->h = geometry->sh = defaults->h;
91 geometry->mix = defaults->mix;
92 }
93 else
94 {
95 geometry->mix = 100;
96 }
97
98 // Parse the geomtry string
99 if ( property != NULL )
100 {
101 char *ptr = property;
102 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
103 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
104 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
105 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
106 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
107 }
108 }
109
110 /** Calculate real geometry.
111 */
112
113 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, struct geometry_s *out, float position )
114 {
115 // Calculate this frames geometry
116 output->nw = in->nw;
117 output->nh = in->nh;
118 output->x = in->x + ( out->x - in->x ) * position + 0.5;
119 output->y = in->y + ( out->y - in->y ) * position + 0.5;
120 output->w = in->w + ( out->w - in->w ) * position;
121 output->h = in->h + ( out->h - in->h ) * position;
122 output->mix = in->mix + ( out->mix - in->mix ) * position;
123 if ( output->mix > 100 )
124 fprintf( stderr, "%f = %f + ( %f - %f ) * %f\n", output->mix, in->mix, out->mix, in->mix, position );
125 }
126
127 /** Parse the alignment properties into the geometry.
128 */
129
130 static int alignment_parse( char* align )
131 {
132 int ret = 0;
133
134 if ( align == NULL );
135 else if ( isdigit( align[ 0 ] ) )
136 ret = atoi( align );
137 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
138 ret = 1;
139 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
140 ret = 2;
141
142 return ret;
143 }
144
145 /** Adjust position according to scaled size and alignment properties.
146 */
147
148 static void alignment_calculate( struct geometry_s *geometry )
149 {
150 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5;
151 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5;
152 }
153
154 /** Calculate the position for this frame.
155 */
156
157 static inline float position_calculate( mlt_transition this, mlt_frame frame )
158 {
159 // Get the in and out position
160 mlt_position in = mlt_transition_get_in( this );
161 mlt_position out = mlt_transition_get_out( this );
162
163 // Get the position
164 mlt_position position = mlt_frame_get_position( frame );
165
166 // Now do the calcs
167 return ( float )( position - in ) / ( float )( out - in + 1 );
168 }
169
170 /** Calculate the field delta for this frame - position between two frames.
171 */
172
173 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
174 {
175 // Get the in and out position
176 mlt_position in = mlt_transition_get_in( this );
177 mlt_position out = mlt_transition_get_out( this );
178
179 // Get the position of the frame
180 mlt_position position = mlt_frame_get_position( frame );
181
182 // Now do the calcs
183 float x = ( float )( position - in ) / ( float )( out - in + 1 );
184 float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
185
186 return ( y - x ) / 2.0;
187 }
188
189 static int get_value( mlt_properties properties, char *preferred, char *fallback )
190 {
191 int value = mlt_properties_get_int( properties, preferred );
192 if ( value == 0 )
193 value = mlt_properties_get_int( properties, fallback );
194 return value;
195 }
196
197 /** Composite function.
198 */
199
200 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field )
201 {
202 int ret = 0;
203 int i, j;
204 int x_src = 0, y_src = 0;
205 int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
206 if ( geometry.mix > 100 )
207 fprintf( stderr, "%f %d\n", geometry.mix, weight );
208 int stride_src = width_src * bpp;
209 int stride_dest = width_dest * bpp;
210
211 // Adjust to consumer scale
212 int x = geometry.x * width_dest / geometry.nw + 0.5;
213 int y = geometry.y * height_dest / geometry.nh + 0.5;
214
215 if ( bpp == 2 )
216 x -= x % 2;
217
218 // optimization points - no work to do
219 if ( width_src <= 0 || height_src <= 0 )
220 return ret;
221
222 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
223 return ret;
224
225 // crop overlay off the left edge of frame
226 if ( x < 0 )
227 {
228 x_src = -x;
229 width_src -= x_src;
230 x = 0;
231 }
232
233 // crop overlay beyond right edge of frame
234 else if ( x + width_src > width_dest )
235 width_src = width_dest - x;
236
237 // crop overlay off the top edge of the frame
238 if ( y < 0 )
239 {
240 y_src = -y;
241 height_src -= y_src;
242 }
243 // crop overlay below bottom edge of frame
244 else if ( y + height_src > height_dest )
245 height_src = height_dest - y;
246
247 // offset pointer into overlay buffer based on cropping
248 p_src += x_src * bpp + y_src * stride_src;
249
250 // offset pointer into frame buffer based upon positive coordinates only!
251 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
252
253 // offset pointer into alpha channel based upon cropping
254 if ( p_alpha )
255 p_alpha += x_src + y_src * stride_src / bpp;
256
257 // Assuming lower field first
258 // Special care is taken to make sure the b_frame is aligned to the correct field.
259 // field 0 = lower field and y should be odd (y is 0-based).
260 // field 1 = upper field and y should be even.
261 if ( ( field > -1 ) && ( y % 2 == field ) )
262 {
263 //fprintf( stderr, "field %d y %d\n", field, y );
264 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
265 p_dest += stride_dest;
266 else
267 p_dest -= stride_dest;
268 }
269
270 // On the second field, use the other lines from b_frame
271 if ( field == 1 )
272 {
273 p_src += stride_src;
274 if ( p_alpha )
275 p_alpha += stride_src / bpp;
276 height_src--;
277 }
278
279 uint8_t *p = p_src;
280 uint8_t *q = p_dest;
281 uint8_t *o = p_dest;
282 uint8_t *z = p_alpha;
283
284 uint8_t a;
285 int32_t value;
286 int step = ( field > -1 ) ? 2 : 1;
287
288 stride_src = stride_src * step;
289 int alpha_stride = stride_src / bpp;
290 stride_dest = stride_dest * step;
291
292 // now do the compositing only to cropped extents
293 for ( i = 0; i < height_src; i += step )
294 {
295 p = p_src;
296 q = p_dest;
297 o = q;
298 z = p_alpha;
299
300 for ( j = 0; j < width_src; j ++ )
301 {
302 a = ( z == NULL ) ? 255 : *z ++;
303 value = ( weight * ( a + 1 ) ) >> 8;
304 *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16;
305 *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16;
306 }
307
308 p_src += stride_src;
309 p_dest += stride_dest;
310 if ( p_alpha )
311 p_alpha += alpha_stride;
312 }
313
314 return ret;
315 }
316
317
318 /** Get the properly sized image from b_frame.
319 */
320
321 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
322 {
323 int ret = 0;
324 mlt_image_format format = mlt_image_yuv422;
325
326 // Initialise the scaled dimensions from the computed
327 geometry->sw = geometry->w;
328 geometry->sh = geometry->h;
329
330 // Compute the dimensioning rectangle
331 mlt_properties b_props = mlt_frame_properties( b_frame );
332 mlt_properties properties = mlt_transition_properties( this );
333
334 if ( mlt_properties_get( properties, "distort" ) == NULL )
335 {
336 // Adjust b_frame pixel aspect
337 int normalised_width = geometry->w;
338 int normalised_height = geometry->h;
339 int real_width = get_value( b_props, "real_width", "width" );
340 int real_height = get_value( b_props, "real_height", "height" );
341 int scaled_width = real_width;
342 int scaled_height = real_height;
343
344 // Now ensure that our images fit in the normalised frame
345 if ( scaled_width > normalised_width )
346 {
347 scaled_height = scaled_height * normalised_width / scaled_width;
348 scaled_width = normalised_width;
349 }
350 if ( scaled_height > normalised_height )
351 {
352 scaled_width = scaled_width * normalised_height / scaled_height;
353 scaled_height = normalised_height;
354 }
355
356 // Now we need to align to the geometry
357 if ( scaled_width <= geometry->w && scaled_height <= geometry->h )
358 {
359 // Save the new scaled dimensions
360 geometry->sw = scaled_width;
361 geometry->sh = scaled_height;
362 }
363 }
364
365 // We want to ensure that we bypass resize now...
366 mlt_properties_set( b_props, "distort", "true" );
367
368 // Take into consideration alignment for optimisation
369 alignment_calculate( geometry );
370
371 // Adjust to consumer scale
372 int x = geometry->x * *width / geometry->nw + 0.5;
373 int y = geometry->y * *height / geometry->nh + 0.5;
374 *width = geometry->sw * *width / geometry->nw;
375 *height = geometry->sh * *height / geometry->nh;
376
377 x -= x % 2;
378
379 // optimization points - no work to do
380 if ( *width <= 0 || *height <= 0 )
381 return 1;
382
383 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
384 return 1;
385
386 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
387
388 return ret;
389 }
390
391
392 static uint8_t *transition_get_alpha_mask( mlt_frame this )
393 {
394 // Obtain properties of frame
395 mlt_properties properties = mlt_frame_properties( this );
396
397 // Return the alpha mask
398 return mlt_properties_get_data( properties, "alpha", NULL );
399 }
400
401 /** Get the image.
402 */
403
404 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
405 {
406 // Get the b frame from the stack
407 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
408
409 // This compositer is yuv422 only
410 *format = mlt_image_yuv422;
411
412 // Get the transition from the a frame
413 mlt_transition this = mlt_frame_pop_service( a_frame );
414
415 // Get the image from the a frame
416 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
417
418 if ( b_frame != NULL )
419 {
420 // Get the properties of the a frame
421 mlt_properties a_props = mlt_frame_properties( a_frame );
422
423 // Get the properties of the b frame
424 mlt_properties b_props = mlt_frame_properties( b_frame );
425
426 // Get the properties from the transition
427 mlt_properties properties = mlt_transition_properties( this );
428
429 // Structures for geometry
430 struct geometry_s result;
431 struct geometry_s start;
432 struct geometry_s end;
433
434 // Calculate the position
435 float position = mlt_properties_get_double( b_props, "relative_position" );
436 float delta = delta_calculate( this, a_frame );
437
438 // Obtain the normalised width and height from the a_frame
439 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
440 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
441
442 // Now parse the geometries
443 geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
444 geometry_parse( &end, &start, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
445
446 // Now parse the alignment
447 result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
448 result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
449
450 // Since we are the consumer of the b_frame, we must pass along these
451 // consumer properties from the a_frame
452 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
453 mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) );
454
455 // Do the calculation
456 geometry_calculate( &result, &start, &end, position );
457
458 // Get the image from the b frame
459 uint8_t *image_b;
460 int width_b = *width;
461 int height_b = *height;
462
463 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
464 {
465 uint8_t *dest = *image;
466 uint8_t *src = image_b;
467 int bpp = 2;
468 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
469 int progressive = mlt_properties_get_int( a_props, "progressive" ) ||
470 mlt_properties_get_int( a_props, "consumer_progressive" ) ||
471 mlt_properties_get_int( properties, "progressive" );
472 int field;
473
474 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
475 {
476 // Assume lower field (0) first
477 float field_position = position + field * delta;
478
479 // Do the calculation
480 geometry_calculate( &result, &start, &end, field_position );
481
482 // Align
483 alignment_calculate( &result );
484
485 // Composite the b_frame on the a_frame
486 composite_yuv( dest, *width, *height, bpp, src, width_b, height_b, alpha, result, progressive ? -1 : field );
487 }
488 }
489 }
490
491 return 0;
492 }
493
494 /** Composition transition processing.
495 */
496
497 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
498 {
499 // Propogate the transition properties to the b frame
500 mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, a_frame ) );
501 mlt_frame_push_service( a_frame, this );
502 mlt_frame_push_get_image( a_frame, transition_get_image );
503 mlt_frame_push_frame( a_frame, b_frame );
504 return a_frame;
505 }
506
507 /** Constructor for the filter.
508 */
509
510 mlt_transition transition_composite_init( char *arg )
511 {
512 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
513 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
514 {
515 this->process = composite_process;
516 mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" );
517 mlt_properties_set( mlt_transition_properties( this ), "end", "" );
518 }
519 return this;
520 }
521