First attempt at a composite clean up
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 int frame;
44 float position;
45 float mix;
46 int nw; // normalised width
47 int nh; // normalised height
48 int sw; // scaled width, not including consumer scale based upon w/nw
49 int sh; // scaled height, not including consumer scale based upon h/nh
50 float x;
51 float y;
52 float w;
53 float h;
54 int halign; // horizontal alignment: 0=left, 1=center, 2=right
55 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
56 int distort;
57 struct geometry_s *next;
58 };
59
60 /** Parse a value from a geometry string.
61 */
62
63 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
64 {
65 float value = defaults;
66
67 if ( *ptr != NULL && **ptr != '\0' )
68 {
69 char *end = NULL;
70 value = strtod( *ptr, &end );
71 if ( end != NULL )
72 {
73 if ( *end == '%' )
74 value = ( value / 100.0 ) * normalisation;
75 while ( *end == delim || *end == '%' )
76 end ++;
77 }
78 *ptr = end;
79 }
80
81 return value;
82 }
83
84 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
85 expressed as a percentage by appending a % after the value, otherwise values are
86 assumed to be relative to the normalised dimensions of the consumer.
87 */
88
89 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
90 {
91 // Assign normalised width and height
92 geometry->nw = nw;
93 geometry->nh = nh;
94
95 // Assign from defaults if available
96 if ( defaults != NULL )
97 {
98 geometry->x = defaults->x;
99 geometry->y = defaults->y;
100 geometry->w = geometry->sw = defaults->w;
101 geometry->h = geometry->sh = defaults->h;
102 geometry->distort = defaults->distort;
103 geometry->mix = defaults->mix;
104 defaults->next = geometry;
105 }
106 else
107 {
108 geometry->mix = 100;
109 }
110
111 // Parse the geomtry string
112 if ( property != NULL && strcmp( property, "" ) )
113 {
114 char *ptr = property;
115 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
116 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
117 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
118 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
119 if ( *ptr == '!' )
120 {
121 geometry->distort = 1;
122 ptr ++;
123 if ( *ptr == ':' )
124 ptr ++;
125 }
126 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
127 }
128 }
129
130 /** Calculate real geometry.
131 */
132
133 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
134 {
135 // Search in for position
136 struct geometry_s *out = in->next;
137
138 if ( position >= 1.0 )
139 {
140 int section = floor( position );
141 position -= section;
142 if ( section % 2 == 1 )
143 position = 1.0 - position;
144 }
145
146 while ( out->next != NULL )
147 {
148 if ( position >= in->position && position < out->position )
149 break;
150
151 in = out;
152 out = in->next;
153 }
154
155 position = ( position - in->position ) / ( out->position - in->position );
156
157 // Calculate this frames geometry
158 if ( in->frame != out->frame - 1 )
159 {
160 output->nw = in->nw;
161 output->nh = in->nh;
162 output->x = rint( in->x + ( out->x - in->x ) * position + 0.5 );
163 output->y = rint( in->y + ( out->y - in->y ) * position + 0.5 );
164 output->w = rint( in->w + ( out->w - in->w ) * position + 0.5 );
165 output->h = rint( in->h + ( out->h - in->h ) * position + 0.5 );
166 output->mix = in->mix + ( out->mix - in->mix ) * position;
167 output->distort = in->distort;
168 }
169 else
170 {
171 output->nw = out->nw;
172 output->nh = out->nh;
173 output->x = out->x;
174 output->y = out->y;
175 output->w = out->w;
176 output->h = out->h;
177 output->mix = out->mix;
178 output->distort = out->distort;
179 }
180
181 // Definitely incorrect...
182 #if 0
183 if ( ( int )output->x & 1 && ( int )output->w & 1 )
184 {
185 output->x -= 1.0;
186 output->w += 1.0;
187 }
188 else if ( ( int )output->x & 1 )
189 {
190 output->x += 1.0;
191 }
192 else if ( ( int )output->w & 1 )
193 {
194 output->w += 1.0;
195 }
196 #endif
197 }
198
199 static void transition_destroy_keys( void *arg )
200 {
201 struct geometry_s *ptr = arg;
202 struct geometry_s *next = NULL;
203
204 while ( ptr != NULL )
205 {
206 next = ptr->next;
207 free( ptr );
208 ptr = next;
209 }
210 }
211
212 static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
213 {
214 // Loop variable for property interrogation
215 int i = 0;
216
217 // Get the properties of the transition
218 mlt_properties properties = mlt_transition_properties( this );
219
220 // Get the in and out position
221 mlt_position in = mlt_transition_get_in( this );
222 mlt_position out = mlt_transition_get_out( this );
223
224 // Create the start
225 struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
226
227 // Create the end (we always need two entries)
228 struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
229
230 // Pointer
231 struct geometry_s *ptr = start;
232
233 // Parse the start property
234 geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
235
236 // Parse the keys in between
237 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
238 {
239 // Get the name of the property
240 char *name = mlt_properties_get_name( properties, i );
241
242 // Check that it's valid
243 if ( !strncmp( name, "key[", 4 ) )
244 {
245 // Get the value of the property
246 char *value = mlt_properties_get_value( properties, i );
247
248 // Determine the frame number
249 int frame = atoi( name + 4 );
250
251 // Determine the position
252 float position = 0;
253
254 if ( frame >= 0 && frame < ( out - in ) )
255 position = ( float )frame / ( float )( out - in + 1 );
256 else if ( frame < 0 && - frame < ( out - in ) )
257 position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
258
259 // For now, we'll exclude all keys received out of order
260 if ( position > ptr->position )
261 {
262 // Create a new geometry
263 struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
264
265 // Parse and add to the list
266 geometry_parse( temp, ptr, value, normalised_width, normalised_height );
267
268 // Assign the position and frame
269 temp->frame = frame;
270 temp->position = position;
271
272 // Allow the next to be appended after this one
273 ptr = temp;
274 }
275 else
276 {
277 fprintf( stderr, "Key out of order - skipping %s\n", name );
278 }
279 }
280 }
281
282 // Parse the end
283 geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
284 if ( out > 0 )
285 end->position = ( float )( out - in ) / ( float )( out - in + 1 );
286 else
287 end->position = 1;
288
289 return start;
290 }
291
292 /** Parse the alignment properties into the geometry.
293 */
294
295 static int alignment_parse( char* align )
296 {
297 int ret = 0;
298
299 if ( align == NULL );
300 else if ( isdigit( align[ 0 ] ) )
301 ret = atoi( align );
302 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
303 ret = 1;
304 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
305 ret = 2;
306
307 return ret;
308 }
309
310 /** Adjust position according to scaled size and alignment properties.
311 */
312
313 static void alignment_calculate( struct geometry_s *geometry )
314 {
315 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2;
316 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign;
317 }
318
319 /** Calculate the position for this frame.
320 */
321
322 static float position_calculate( mlt_transition this, mlt_position position )
323 {
324 // Get the in and out position
325 mlt_position in = mlt_transition_get_in( this );
326 mlt_position out = mlt_transition_get_out( this );
327
328 // Now do the calcs
329 return ( float )( position - in ) / ( float )( out - in + 1 );
330 }
331
332 /** Calculate the field delta for this frame - position between two frames.
333 */
334
335 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
336 {
337 // Get the in and out position
338 mlt_position in = mlt_transition_get_in( this );
339 mlt_position out = mlt_transition_get_out( this );
340
341 // Get the position of the frame
342 char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" );
343 mlt_position position = mlt_properties_get_position( mlt_frame_properties( frame ), name );
344
345 // Now do the calcs
346 float x = ( float )( position - in ) / ( float )( out - in + 1 );
347 float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
348
349 return ( y - x ) / 2.0;
350 }
351
352 static int get_value( mlt_properties properties, char *preferred, char *fallback )
353 {
354 int value = mlt_properties_get_int( properties, preferred );
355 if ( value == 0 )
356 value = mlt_properties_get_int( properties, fallback );
357 return value;
358 }
359
360 /** A linear threshold determination function.
361 */
362
363 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
364 {
365 if ( a < edge1 )
366 return 0;
367
368 if ( a >= edge2 )
369 return 0x10000;
370
371 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
372 }
373
374 /** A smoother, non-linear threshold determination function.
375 */
376
377 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
378 {
379 if ( a < edge1 )
380 return 0;
381
382 if ( a >= edge2 )
383 return 0x10000;
384
385 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
386
387 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
388 }
389
390 /** Load the luma map from PGM stream.
391 */
392
393 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
394 {
395 uint8_t *data = NULL;
396 while (1)
397 {
398 char line[128];
399 char comment[128];
400 int i = 2;
401 int maxval;
402 int bpp;
403 uint16_t *p;
404
405 line[127] = '\0';
406
407 // get the magic code
408 if ( fgets( line, 127, f ) == NULL )
409 break;
410
411 // skip comments
412 while ( sscanf( line, " #%s", comment ) > 0 )
413 if ( fgets( line, 127, f ) == NULL )
414 break;
415
416 if ( line[0] != 'P' || line[1] != '5' )
417 break;
418
419 // skip white space and see if a new line must be fetched
420 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
421 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
422 break;
423
424 // skip comments
425 while ( sscanf( line, " #%s", comment ) > 0 )
426 if ( fgets( line, 127, f ) == NULL )
427 break;
428
429 // get the dimensions
430 if ( line[0] == 'P' )
431 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
432 else
433 i = sscanf( line, "%d %d %d", width, height, &maxval );
434
435 // get the height value, if not yet
436 if ( i < 2 )
437 {
438 if ( fgets( line, 127, f ) == NULL )
439 break;
440
441 // skip comments
442 while ( sscanf( line, " #%s", comment ) > 0 )
443 if ( fgets( line, 127, f ) == NULL )
444 break;
445
446 i = sscanf( line, "%d", height );
447 if ( i == 0 )
448 break;
449 else
450 i = 2;
451 }
452
453 // get the maximum gray value, if not yet
454 if ( i < 3 )
455 {
456 if ( fgets( line, 127, f ) == NULL )
457 break;
458
459 // skip comments
460 while ( sscanf( line, " #%s", comment ) > 0 )
461 if ( fgets( line, 127, f ) == NULL )
462 break;
463
464 i = sscanf( line, "%d", &maxval );
465 if ( i == 0 )
466 break;
467 }
468
469 // determine if this is one or two bytes per pixel
470 bpp = maxval > 255 ? 2 : 1;
471
472 // allocate temporary storage for the raw data
473 data = mlt_pool_alloc( *width * *height * bpp );
474 if ( data == NULL )
475 break;
476
477 // read the raw data
478 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
479 break;
480
481 // allocate the luma bitmap
482 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
483 if ( *map == NULL )
484 break;
485
486 // proces the raw data into the luma bitmap
487 for ( i = 0; i < *width * *height * bpp; i += bpp )
488 {
489 if ( bpp == 1 )
490 *p++ = data[ i ] << 8;
491 else
492 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
493 }
494
495 break;
496 }
497
498 if ( data != NULL )
499 mlt_pool_release( data );
500 }
501
502 /** Generate a luma map from any YUV image.
503 */
504
505 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
506 {
507 int i;
508
509 // allocate the luma bitmap
510 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
511 if ( *map == NULL )
512 return;
513
514 // proces the image data into the luma bitmap
515 for ( i = 0; i < width * height * 2; i += 2 )
516 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
517 }
518
519
520 /** Composite a source line over a destination line
521 */
522
523 static inline
524 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
525 {
526 register int j;
527 int a, mix;
528
529 for ( j = 0; j < width_src; j ++ )
530 {
531 a = ( alpha == NULL ) ? 255 : *alpha ++;
532 mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight );
533 mix = ( mix * ( a + 1 ) ) >> 8;
534 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
535 dest++;
536 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
537 dest++;
538 }
539 }
540
541 /** Composite function.
542 */
543
544 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
545 {
546 int ret = 0;
547 int i;
548 int x_src = 0, y_src = 0;
549 int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
550 int step = ( field > -1 ) ? 2 : 1;
551 int bpp = 2;
552 int stride_src = width_src * bpp;
553 int stride_dest = width_dest * bpp;
554
555 // Adjust to consumer scale
556 int x = geometry.x * width_dest / geometry.nw;
557 int y = geometry.y * height_dest / geometry.nh;
558 int uneven = ( x & 1 );
559
560 // optimization points - no work to do
561 if ( width_src <= 0 || height_src <= 0 )
562 return ret;
563
564 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
565 return ret;
566
567 // crop overlay off the left edge of frame
568 if ( x < 0 )
569 {
570 x_src = -x;
571 width_src -= x_src;
572 x = 0;
573 }
574
575 // crop overlay beyond right edge of frame
576 if ( x + width_src > width_dest )
577 width_src = width_dest - x;
578
579 // crop overlay off the top edge of the frame
580 if ( y < 0 )
581 {
582 y_src = -y;
583 height_src -= y_src;
584 y = 0;
585 }
586
587 // crop overlay below bottom edge of frame
588 if ( y + height_src > height_dest )
589 height_src = height_dest - y;
590
591 // offset pointer into overlay buffer based on cropping
592 p_src += x_src * bpp + y_src * stride_src;
593
594 // offset pointer into frame buffer based upon positive coordinates only!
595 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
596
597 // offset pointer into alpha channel based upon cropping
598 if ( p_alpha )
599 p_alpha += x_src + y_src * stride_src / bpp;
600
601 // offset pointer into luma channel based upon cropping
602 if ( p_luma )
603 p_luma += x_src + y_src * stride_src / bpp;
604
605 // Assuming lower field first
606 // Special care is taken to make sure the b_frame is aligned to the correct field.
607 // field 0 = lower field and y should be odd (y is 0-based).
608 // field 1 = upper field and y should be even.
609 if ( ( field > -1 ) && ( y % 2 == field ) )
610 {
611 //fprintf( stderr, "field %d y %d\n", field, y );
612 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
613 p_dest += stride_dest;
614 else
615 p_dest -= stride_dest;
616 }
617
618 // On the second field, use the other lines from b_frame
619 if ( field == 1 )
620 {
621 p_src += stride_src;
622 if ( p_alpha )
623 p_alpha += stride_src / bpp;
624 height_src--;
625 }
626
627 stride_src *= step;
628 stride_dest *= step;
629 int alpha_stride = stride_src / bpp;
630
631 if ( uneven )
632 p_src -= 2;
633
634 // now do the compositing only to cropped extents
635 if ( line_fn != NULL )
636 {
637 for ( i = 0; i < height_src; i += step )
638 {
639 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
640
641 p_src += stride_src;
642 p_dest += stride_dest;
643 if ( p_alpha )
644 p_alpha += alpha_stride;
645 if ( p_luma )
646 p_luma += alpha_stride;
647 }
648 }
649 else
650 {
651 for ( i = 0; i < height_src; i += step )
652 {
653 composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
654
655 p_src += stride_src;
656 p_dest += stride_dest;
657 if ( p_alpha )
658 p_alpha += alpha_stride;
659 if ( p_luma )
660 p_luma += alpha_stride;
661 }
662 }
663
664 return ret;
665 }
666
667
668 /** Scale 16bit greyscale luma map using nearest neighbor.
669 */
670
671 static inline void
672 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height )
673 {
674 register int i, j;
675 register int x_step = ( src_width << 16 ) / dest_width;
676 register int y_step = ( src_height << 16 ) / dest_height;
677 register int x, y = 0;
678
679 for ( i = 0; i < dest_height; i++ )
680 {
681 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
682 x = 0;
683
684 for ( j = 0; j < dest_width; j++ )
685 {
686 *dest_buf++ = src[ x >> 16 ];
687 x += x_step;
688 }
689 y += y_step;
690 }
691 }
692
693 static uint16_t* get_luma( mlt_properties properties, int width, int height )
694 {
695 // The cached luma map information
696 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
697 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
698 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
699
700 // If the filename property changed, reload the map
701 char *resource = mlt_properties_get( properties, "luma" );
702
703 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
704 {
705 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
706 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
707 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
708
709 // Load the original luma once
710 if ( orig_bitmap == NULL )
711 {
712 char *extension = extension = strrchr( resource, '.' );
713
714 // See if it is a PGM
715 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
716 {
717 // Open PGM
718 FILE *f = fopen( resource, "r" );
719 if ( f != NULL )
720 {
721 // Load from PGM
722 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
723 fclose( f );
724
725 // Remember the original size for subsequent scaling
726 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
727 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
728 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
729 }
730 }
731 else
732 {
733 // Get the factory producer service
734 char *factory = mlt_properties_get( properties, "factory" );
735
736 // Create the producer
737 mlt_producer producer = mlt_factory_producer( factory, resource );
738
739 // If we have one
740 if ( producer != NULL )
741 {
742 // Get the producer properties
743 mlt_properties producer_properties = mlt_producer_properties( producer );
744
745 // Ensure that we loop
746 mlt_properties_set( producer_properties, "eof", "loop" );
747
748 // Now pass all producer. properties on the transition down
749 mlt_properties_pass( producer_properties, properties, "luma." );
750
751 // We will get the alpha frame from the producer
752 mlt_frame luma_frame = NULL;
753
754 // Get the luma frame
755 if ( mlt_service_get_frame( mlt_producer_service( producer ), &luma_frame, 0 ) == 0 )
756 {
757 uint8_t *luma_image;
758 mlt_image_format luma_format = mlt_image_yuv422;
759
760 // Get image from the luma producer
761 mlt_properties_set( mlt_frame_properties( luma_frame ), "rescale.interp", "none" );
762 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
763
764 // Generate the luma map
765 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
766 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
767
768 // Remember the original size for subsequent scaling
769 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
770 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
771 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
772
773 // Cleanup the luma frame
774 mlt_frame_close( luma_frame );
775 }
776
777 // Cleanup the luma producer
778 mlt_producer_close( producer );
779 }
780 }
781 }
782 // Scale luma map
783 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
784 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height );
785
786 // Remember the scaled luma size to prevent unnecessary scaling
787 mlt_properties_set_int( properties, "_luma.width", width );
788 mlt_properties_set_int( properties, "_luma.height", height );
789 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
790 }
791 return luma_bitmap;
792 }
793
794 /** Get the properly sized image from b_frame.
795 */
796
797 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
798 {
799 int ret = 0;
800 mlt_image_format format = mlt_image_yuv422;
801
802 // Get the properties objects
803 mlt_properties b_props = mlt_frame_properties( b_frame );
804 mlt_properties properties = mlt_transition_properties( this );
805
806 if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 )
807 {
808 // Adjust b_frame pixel aspect
809 int normalised_width = geometry->w;
810 int normalised_height = geometry->h;
811 int real_width = get_value( b_props, "real_width", "width" );
812 int real_height = get_value( b_props, "real_height", "height" );
813 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
814 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
815 int scaled_width = input_ar / output_ar * real_width;
816 int scaled_height = real_height;
817
818 // Now ensure that our images fit in the normalised frame
819 if ( scaled_width > normalised_width )
820 {
821 scaled_height = scaled_height * normalised_width / scaled_width;
822 scaled_width = normalised_width;
823 }
824 if ( scaled_height > normalised_height )
825 {
826 scaled_width = scaled_width * normalised_height / scaled_height;
827 scaled_height = normalised_height;
828 }
829
830 // Now apply the fill
831 // TODO: Should combine fill/distort in one property
832 if ( mlt_properties_get( properties, "fill" ) != NULL )
833 {
834 scaled_width = ( geometry->w / scaled_width ) * scaled_width;
835 scaled_height = ( geometry->h / scaled_height ) * scaled_height;
836 }
837
838 // Save the new scaled dimensions
839 geometry->sw = scaled_width;
840 geometry->sh = scaled_height;
841 }
842 else
843 {
844 geometry->sw = geometry->w;
845 geometry->sh = geometry->h;
846 }
847
848 // We want to ensure that we bypass resize now...
849 mlt_properties_set( b_props, "distort", "true" );
850
851 // Take into consideration alignment for optimisation
852 alignment_calculate( geometry );
853
854 // Adjust to consumer scale
855 int x = geometry->x * *width / geometry->nw;
856 int y = geometry->y * *height / geometry->nh;
857 *width = geometry->sw * *width / geometry->nw;
858 *height = geometry->sh * *height / geometry->nh;
859
860 //x = ( x | 1 ) ^ 1;
861
862 // optimization points - no work to do
863 if ( *width < 1 || *height < 1 )
864 return 1;
865
866 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
867 return 1;
868
869 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
870
871 return ret;
872 }
873
874
875 static struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position )
876 {
877 // Get the properties from the transition
878 mlt_properties properties = mlt_transition_properties( this );
879
880 // Get the properties from the frame
881 mlt_properties a_props = mlt_frame_properties( a_frame );
882
883 // Structures for geometry
884 struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
885
886 // Now parse the geometries
887 if ( start == NULL || mlt_properties_get_int( properties, "refresh" ) )
888 {
889 // Obtain the normalised width and height from the a_frame
890 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
891 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
892
893 // Parse the transitions properties
894 start = transition_parse_keys( this, normalised_width, normalised_height );
895
896 // Assign to properties to ensure we get destroyed
897 mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
898 mlt_properties_set_int( properties, "refresh", 0 );
899 }
900
901 // Do the calculation
902 geometry_calculate( result, start, position );
903
904 // Now parse the alignment
905 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
906 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
907
908 return start;
909 }
910
911 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
912 {
913 uint8_t *end = src + length;
914 while ( src < end )
915 {
916 *dest ++ = *src ++;
917 *dest ++ = *src ++;
918 }
919 }
920
921 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
922 {
923 // Create a frame to return
924 mlt_frame b_frame = mlt_frame_init( );
925
926 // Get the properties of the a frame
927 mlt_properties a_props = mlt_frame_properties( a_frame );
928
929 // Get the properties of the b frame
930 mlt_properties b_props = mlt_frame_properties( b_frame );
931
932 // Get the position
933 float position = position_calculate( this, frame_position );
934
935 // Destination image
936 uint8_t *dest = NULL;
937
938 // Get the image and dimensions
939 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
940 int width = mlt_properties_get_int( a_props, "width" );
941 int height = mlt_properties_get_int( a_props, "height" );
942
943 // Pointers for copy operation
944 uint8_t *p;
945 uint8_t *q;
946 uint8_t *r;
947
948 // Corrdinates
949 int w = 0;
950 int h = 0;
951 int x = 0;
952 int y = 0;
953
954 // Will need to know region to copy
955 struct geometry_s result;
956
957 // Calculate the region now
958 composite_calculate( &result, this, a_frame, position );
959
960 // Need to scale down to actual dimensions
961 x = result.x * width / result.nw ;
962 y = result.y * height / result.nh;
963 w = result.w * width / result.nw;
964 h = result.h * height / result.nh;
965
966 if ( y < 0 )
967 {
968 h = h + y;
969 y = 0;
970 }
971
972 if ( y + h > height )
973 h = height - y;
974
975 //x = ( x | 1 ) ^ 1;
976 //w = ( w | 1 ) ^ 1;
977
978 // Now we need to create a new destination image
979 dest = mlt_pool_alloc( w * h * 2 );
980
981 // Copy the region of the image
982 p = image + y * width * 2 + x * 2;
983 q = dest;
984 r = dest + w * h * 2;
985
986 while ( q < r )
987 {
988 inline_memcpy( q, p, w * 2 );
989 q += w * 2;
990 p += width * 2;
991 }
992
993 // Assign to the new frame
994 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
995 mlt_properties_set_int( b_props, "width", w );
996 mlt_properties_set_int( b_props, "height", h );
997
998 // Assign this position to the b frame
999 mlt_frame_set_position( b_frame, frame_position );
1000
1001 // Return the frame
1002 return b_frame;
1003 }
1004
1005 /** Get the image.
1006 */
1007
1008 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1009 {
1010 // Get the b frame from the stack
1011 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1012
1013 // Get the transition from the a frame
1014 mlt_transition this = mlt_frame_pop_service( a_frame );
1015
1016 // This compositer is yuv422 only
1017 *format = mlt_image_yuv422;
1018
1019 // Get the image from the a frame
1020 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1021
1022 // Get the properties from the transition
1023 mlt_properties properties = mlt_transition_properties( this );
1024
1025 if ( b_frame != NULL )
1026 {
1027 // Get the properties of the a frame
1028 mlt_properties a_props = mlt_frame_properties( a_frame );
1029
1030 // Get the properties of the b frame
1031 mlt_properties b_props = mlt_frame_properties( b_frame );
1032
1033 // Structures for geometry
1034 struct geometry_s result;
1035
1036 // Calculate the position
1037 float position = mlt_properties_get_double( b_props, "relative_position" );
1038 float delta = delta_calculate( this, a_frame );
1039
1040 // Do the calculation
1041 struct geometry_s *start = composite_calculate( &result, this, a_frame, position );
1042
1043 // Optimisation - no compositing required
1044 if ( result.mix == 0 || ( result.w == 0 && result.h == 0 ) )
1045 return 0;
1046
1047 // Since we are the consumer of the b_frame, we must pass along these
1048 // consumer properties from the a_frame
1049 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1050
1051 // Get the image from the b frame
1052 uint8_t *image_b = NULL;
1053 int width_b = *width;
1054 int height_b = *height;
1055
1056 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
1057 {
1058 uint8_t *dest = *image;
1059 uint8_t *src = image_b;
1060 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
1061 int progressive =
1062 mlt_properties_get_int( a_props, "consumer_progressive" ) ||
1063 mlt_properties_get_int( properties, "progressive" );
1064 int field;
1065
1066 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1067 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1068 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
1069 composite_line_fn line_fn = NULL;
1070
1071 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1072 {
1073 // Assume lower field (0) first
1074 float field_position = position + field * delta;
1075
1076 // Do the calculation if we need to
1077 geometry_calculate( &result, start, field_position );
1078
1079 // Align
1080 alignment_calculate( &result );
1081
1082 // Composite the b_frame on the a_frame
1083 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1084 }
1085 }
1086 }
1087
1088 return 0;
1089 }
1090
1091 /** Composition transition processing.
1092 */
1093
1094 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1095 {
1096 // Get a unique name to store the frame position
1097 char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" );
1098
1099 // Assign the current position to the name
1100 mlt_properties_set_position( mlt_frame_properties( a_frame ), name, mlt_frame_get_position( a_frame ) );
1101
1102 // Propogate the transition properties to the b frame
1103 mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1104
1105 mlt_frame_push_service( a_frame, this );
1106 mlt_frame_push_frame( a_frame, b_frame );
1107 mlt_frame_push_get_image( a_frame, transition_get_image );
1108 return a_frame;
1109 }
1110
1111 /** Constructor for the filter.
1112 */
1113
1114 mlt_transition transition_composite_init( char *arg )
1115 {
1116 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1117 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1118 {
1119 mlt_properties properties = mlt_transition_properties( this );
1120
1121 this->process = composite_process;
1122
1123 // Default starting motion and zoom
1124 mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" );
1125
1126 // Default factory
1127 mlt_properties_set( properties, "factory", "fezzik" );
1128
1129 #ifdef USE_MMX
1130 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1131 #endif
1132 }
1133 return this;
1134 }