Remaining audio handling switched to stacks; Minor corrections to compositing and...
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 struct mlt_geometry_item_s item;
44 int nw; // normalised width
45 int nh; // normalised height
46 int sw; // scaled width, not including consumer scale based upon w/nw
47 int sh; // scaled height, not including consumer scale based upon h/nh
48 int halign; // horizontal alignment: 0=left, 1=center, 2=right
49 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
50 };
51
52 /** Parse the alignment properties into the geometry.
53 */
54
55 static int alignment_parse( char* align )
56 {
57 int ret = 0;
58
59 if ( align == NULL );
60 else if ( isdigit( align[ 0 ] ) )
61 ret = atoi( align );
62 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
63 ret = 1;
64 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
65 ret = 2;
66
67 return ret;
68 }
69
70 /** Calculate real geometry.
71 */
72
73 static void geometry_calculate( mlt_transition this, struct geometry_s *output, float position )
74 {
75 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
76 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
77 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
78 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
79 int length = mlt_geometry_get_length( geometry );
80
81 // Allow wrapping
82 if ( !repeat_off && position >= length && length != 0 )
83 {
84 int section = position / length;
85 position -= section * length;
86 if ( !mirror_off && section % 2 == 1 )
87 position = length - position;
88 }
89
90 // Fetch the key for the position
91 mlt_geometry_fetch( geometry, &output->item, position );
92 }
93
94 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
95 {
96 // Loop variable for property interrogation
97 int i = 0;
98
99 // Get the properties of the transition
100 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
101
102 // Create an empty geometries object
103 mlt_geometry geometry = mlt_geometry_init( );
104
105 // Get the in and out position
106 mlt_position in = mlt_transition_get_in( this );
107 mlt_position out = mlt_transition_get_out( this );
108 int length = out - in + 1;
109 double cycle = mlt_properties_get_double( properties, "cycle" );
110
111 // Get the new style geometry string
112 char *property = mlt_properties_get( properties, "geometry" );
113
114 // Allow a geometry repeat cycle
115 if ( cycle >= 1 )
116 length = cycle;
117 else if ( cycle > 0 )
118 length *= cycle;
119
120 // Parse the geometry if we have one
121 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
122
123 // Check if we're using the old style geometry
124 if ( property == NULL )
125 {
126 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
127 // practical use - while deprecated, it has been slightly extended too - keys can now
128 // be specified out of order, and can be blanked or NULL to simulate removal
129
130 // Structure to use for parsing and inserting
131 struct mlt_geometry_item_s item;
132
133 // Parse the start property
134 item.frame = 0;
135 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
136 mlt_geometry_insert( geometry, &item );
137
138 // Parse the keys in between
139 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
140 {
141 // Get the name of the property
142 char *name = mlt_properties_get_name( properties, i );
143
144 // Check that it's valid
145 if ( !strncmp( name, "key[", 4 ) )
146 {
147 // Get the value of the property
148 char *value = mlt_properties_get_value( properties, i );
149
150 // Determine the frame number
151 item.frame = atoi( name + 4 );
152
153 // Parse and add to the list
154 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
155 mlt_geometry_insert( geometry, &item );
156 else
157 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
158 }
159 }
160
161 // Parse the end
162 item.frame = -1;
163 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
164 mlt_geometry_insert( geometry, &item );
165 }
166
167 return geometry;
168 }
169
170 /** Adjust position according to scaled size and alignment properties.
171 */
172
173 static void alignment_calculate( struct geometry_s *geometry )
174 {
175 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
176 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
177 }
178
179 /** Calculate the position for this frame.
180 */
181
182 static int position_calculate( mlt_transition this, mlt_position position )
183 {
184 // Get the in and out position
185 mlt_position in = mlt_transition_get_in( this );
186
187 // Now do the calcs
188 return position - in;
189 }
190
191 /** Calculate the field delta for this frame - position between two frames.
192 */
193
194 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
195 {
196 // Get the in and out position
197 mlt_position in = mlt_transition_get_in( this );
198 mlt_position out = mlt_transition_get_out( this );
199 float length = out - in + 1;
200
201 // Get the position of the frame
202 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
203 mlt_position position = mlt_properties_get_position( MLT_FRAME_PROPERTIES( frame ), name );
204
205 // Now do the calcs
206 float x = ( float )( position - in ) / length;
207 float y = ( float )( position + 1 - in ) / length;
208
209 return length * ( y - x ) / 2.0;
210 }
211
212 static int get_value( mlt_properties properties, char *preferred, char *fallback )
213 {
214 int value = mlt_properties_get_int( properties, preferred );
215 if ( value == 0 )
216 value = mlt_properties_get_int( properties, fallback );
217 return value;
218 }
219
220 /** A linear threshold determination function.
221 */
222
223 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
224 {
225 if ( a < edge1 )
226 return 0;
227
228 if ( a >= edge2 )
229 return 0x10000;
230
231 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
232 }
233
234 /** A smoother, non-linear threshold determination function.
235 */
236
237 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
238 {
239 if ( a < edge1 )
240 return 0;
241
242 if ( a >= edge2 )
243 return 0x10000;
244
245 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
246
247 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
248 }
249
250 /** Load the luma map from PGM stream.
251 */
252
253 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
254 {
255 uint8_t *data = NULL;
256 while (1)
257 {
258 char line[128];
259 char comment[128];
260 int i = 2;
261 int maxval;
262 int bpp;
263 uint16_t *p;
264
265 line[127] = '\0';
266
267 // get the magic code
268 if ( fgets( line, 127, f ) == NULL )
269 break;
270
271 // skip comments
272 while ( sscanf( line, " #%s", comment ) > 0 )
273 if ( fgets( line, 127, f ) == NULL )
274 break;
275
276 if ( line[0] != 'P' || line[1] != '5' )
277 break;
278
279 // skip white space and see if a new line must be fetched
280 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
281 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
282 break;
283
284 // skip comments
285 while ( sscanf( line, " #%s", comment ) > 0 )
286 if ( fgets( line, 127, f ) == NULL )
287 break;
288
289 // get the dimensions
290 if ( line[0] == 'P' )
291 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
292 else
293 i = sscanf( line, "%d %d %d", width, height, &maxval );
294
295 // get the height value, if not yet
296 if ( i < 2 )
297 {
298 if ( fgets( line, 127, f ) == NULL )
299 break;
300
301 // skip comments
302 while ( sscanf( line, " #%s", comment ) > 0 )
303 if ( fgets( line, 127, f ) == NULL )
304 break;
305
306 i = sscanf( line, "%d", height );
307 if ( i == 0 )
308 break;
309 else
310 i = 2;
311 }
312
313 // get the maximum gray value, if not yet
314 if ( i < 3 )
315 {
316 if ( fgets( line, 127, f ) == NULL )
317 break;
318
319 // skip comments
320 while ( sscanf( line, " #%s", comment ) > 0 )
321 if ( fgets( line, 127, f ) == NULL )
322 break;
323
324 i = sscanf( line, "%d", &maxval );
325 if ( i == 0 )
326 break;
327 }
328
329 // determine if this is one or two bytes per pixel
330 bpp = maxval > 255 ? 2 : 1;
331
332 // allocate temporary storage for the raw data
333 data = mlt_pool_alloc( *width * *height * bpp );
334 if ( data == NULL )
335 break;
336
337 // read the raw data
338 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
339 break;
340
341 // allocate the luma bitmap
342 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
343 if ( *map == NULL )
344 break;
345
346 // proces the raw data into the luma bitmap
347 for ( i = 0; i < *width * *height * bpp; i += bpp )
348 {
349 if ( bpp == 1 )
350 *p++ = data[ i ] << 8;
351 else
352 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
353 }
354
355 break;
356 }
357
358 if ( data != NULL )
359 mlt_pool_release( data );
360 }
361
362 /** Generate a luma map from any YUV image.
363 */
364
365 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
366 {
367 int i;
368
369 // allocate the luma bitmap
370 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
371 if ( *map == NULL )
372 return;
373
374 // proces the image data into the luma bitmap
375 for ( i = 0; i < width * height * 2; i += 2 )
376 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
377 }
378
379
380 /** Composite a source line over a destination line
381 */
382
383 static inline
384 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
385 {
386 register int j;
387 int a, mix;
388
389 for ( j = 0; j < width_src; j ++ )
390 {
391 a = ( alpha == NULL ) ? 255 : *alpha ++;
392 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
393 mix = ( mix * a ) >> 8;
394 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
395 dest++;
396 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
397 dest++;
398 }
399 }
400
401 /** Composite function.
402 */
403
404 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
405 {
406 int ret = 0;
407 int i;
408 int x_src = 0, y_src = 0;
409 int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 );
410 int step = ( field > -1 ) ? 2 : 1;
411 int bpp = 2;
412 int stride_src = width_src * bpp;
413 int stride_dest = width_dest * bpp;
414
415 // Adjust to consumer scale
416 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
417 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
418 int x_uneven = x & 1;
419
420 // optimization points - no work to do
421 if ( width_src <= 0 || height_src <= 0 )
422 return ret;
423
424 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
425 return ret;
426
427 // crop overlay off the left edge of frame
428 if ( x < 0 )
429 {
430 x_src = -x;
431 width_src -= x_src;
432 x = 0;
433 }
434
435 // crop overlay beyond right edge of frame
436 if ( x + width_src > width_dest )
437 width_src = width_dest - x;
438
439 // crop overlay off the top edge of the frame
440 if ( y < 0 )
441 {
442 y_src = -y;
443 height_src -= y_src;
444 y = 0;
445 }
446
447 // crop overlay below bottom edge of frame
448 if ( y + height_src > height_dest )
449 height_src = height_dest - y;
450
451 // offset pointer into overlay buffer based on cropping
452 p_src += x_src * bpp + y_src * stride_src;
453
454 // offset pointer into frame buffer based upon positive coordinates only!
455 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
456
457 // offset pointer into alpha channel based upon cropping
458 if ( p_alpha )
459 p_alpha += x_src + y_src * stride_src / bpp;
460
461 // offset pointer into luma channel based upon cropping
462 if ( p_luma )
463 p_luma += x_src + y_src * stride_src / bpp;
464
465 // Assuming lower field first
466 // Special care is taken to make sure the b_frame is aligned to the correct field.
467 // field 0 = lower field and y should be odd (y is 0-based).
468 // field 1 = upper field and y should be even.
469 if ( ( field > -1 ) && ( y % 2 == field ) )
470 {
471 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
472 p_dest += stride_dest;
473 else
474 p_dest -= stride_dest;
475 }
476
477 // On the second field, use the other lines from b_frame
478 if ( field == 1 )
479 {
480 p_src += stride_src;
481 if ( p_alpha )
482 p_alpha += stride_src / bpp;
483 height_src--;
484 }
485
486 stride_src *= step;
487 stride_dest *= step;
488 int alpha_stride = stride_src / bpp;
489
490 // Make sure than x and w are even
491 if ( x_uneven )
492 {
493 p_src += 2;
494 width_src --;
495 }
496
497 // now do the compositing only to cropped extents
498 if ( line_fn != NULL )
499 {
500 for ( i = 0; i < height_src; i += step )
501 {
502 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
503
504 p_src += stride_src;
505 p_dest += stride_dest;
506 if ( p_alpha )
507 p_alpha += alpha_stride;
508 if ( p_luma )
509 p_luma += alpha_stride;
510 }
511 }
512 else
513 {
514 for ( i = 0; i < height_src; i += step )
515 {
516 composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
517
518 p_src += stride_src;
519 p_dest += stride_dest;
520 if ( p_alpha )
521 p_alpha += alpha_stride;
522 if ( p_luma )
523 p_luma += alpha_stride;
524 }
525 }
526
527 return ret;
528 }
529
530
531 /** Scale 16bit greyscale luma map using nearest neighbor.
532 */
533
534 static inline void
535 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
536 {
537 register int i, j;
538 register int x_step = ( src_width << 16 ) / dest_width;
539 register int y_step = ( src_height << 16 ) / dest_height;
540 register int x, y = 0;
541
542 for ( i = 0; i < dest_height; i++ )
543 {
544 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
545 x = 0;
546
547 for ( j = 0; j < dest_width; j++ )
548 {
549 *dest_buf++ = src[ x >> 16 ] ^ invert;
550 x += x_step;
551 }
552 y += y_step;
553 }
554 }
555
556 static uint16_t* get_luma( mlt_properties properties, int width, int height )
557 {
558 // The cached luma map information
559 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
560 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
561 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
562 int invert = mlt_properties_get_int( properties, "luma_invert" );
563
564 // If the filename property changed, reload the map
565 char *resource = mlt_properties_get( properties, "luma" );
566
567 char temp[ 512 ];
568
569 if ( resource != NULL && strchr( resource, '%' ) )
570 {
571 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
572 resource = temp;
573 }
574
575 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
576 {
577 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
578 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
579 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
580
581 // Load the original luma once
582 if ( orig_bitmap == NULL )
583 {
584 char *extension = extension = strrchr( resource, '.' );
585
586 // See if it is a PGM
587 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
588 {
589 // Open PGM
590 FILE *f = fopen( resource, "r" );
591 if ( f != NULL )
592 {
593 // Load from PGM
594 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
595 fclose( f );
596
597 // Remember the original size for subsequent scaling
598 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
599 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
600 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
601 }
602 }
603 else
604 {
605 // Get the factory producer service
606 char *factory = mlt_properties_get( properties, "factory" );
607
608 // Create the producer
609 mlt_producer producer = mlt_factory_producer( factory, resource );
610
611 // If we have one
612 if ( producer != NULL )
613 {
614 // Get the producer properties
615 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
616
617 // Ensure that we loop
618 mlt_properties_set( producer_properties, "eof", "loop" );
619
620 // Now pass all producer. properties on the transition down
621 mlt_properties_pass( producer_properties, properties, "luma." );
622
623 // We will get the alpha frame from the producer
624 mlt_frame luma_frame = NULL;
625
626 // Get the luma frame
627 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
628 {
629 uint8_t *luma_image;
630 mlt_image_format luma_format = mlt_image_yuv422;
631
632 // Get image from the luma producer
633 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
634 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
635
636 // Generate the luma map
637 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
638 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
639
640 // Remember the original size for subsequent scaling
641 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
642 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
643 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
644
645 // Cleanup the luma frame
646 mlt_frame_close( luma_frame );
647 }
648
649 // Cleanup the luma producer
650 mlt_producer_close( producer );
651 }
652 }
653 }
654 // Scale luma map
655 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
656 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
657
658 // Remember the scaled luma size to prevent unnecessary scaling
659 mlt_properties_set_int( properties, "_luma.width", width );
660 mlt_properties_set_int( properties, "_luma.height", height );
661 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
662 }
663 return luma_bitmap;
664 }
665
666 /** Get the properly sized image from b_frame.
667 */
668
669 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
670 {
671 int ret = 0;
672 mlt_image_format format = mlt_image_yuv422;
673
674 // Get the properties objects
675 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
676 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
677
678 if ( mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
679 {
680 // Adjust b_frame pixel aspect
681 int normalised_width = geometry->item.w;
682 int normalised_height = geometry->item.h;
683 int real_width = get_value( b_props, "real_width", "width" );
684 int real_height = get_value( b_props, "real_height", "height" );
685 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
686 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
687 int scaled_width = input_ar / output_ar * real_width;
688 int scaled_height = real_height;
689
690 // Now ensure that our images fit in the normalised frame
691 if ( scaled_width > normalised_width )
692 {
693 scaled_height = scaled_height * normalised_width / scaled_width;
694 scaled_width = normalised_width;
695 }
696 if ( scaled_height > normalised_height )
697 {
698 scaled_width = scaled_width * normalised_height / scaled_height;
699 scaled_height = normalised_height;
700 }
701
702 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
703 // ????: Shouln't this be the default behaviour?
704 if ( mlt_properties_get_int( properties, "fill" ) )
705 {
706 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height < normalised_width )
707 {
708 scaled_width = scaled_width * normalised_height / scaled_height;
709 scaled_height = normalised_height;
710 }
711 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
712 {
713 scaled_height = scaled_height * normalised_width / scaled_width;
714 scaled_width = normalised_width;
715 }
716 }
717
718 // Save the new scaled dimensions
719 geometry->sw = scaled_width;
720 geometry->sh = scaled_height;
721 }
722 else
723 {
724 geometry->sw = geometry->item.w;
725 geometry->sh = geometry->item.h;
726 }
727
728 // We want to ensure that we bypass resize now...
729 mlt_properties_set_int( b_props, "distort", 1 );
730
731 // Take into consideration alignment for optimisation
732 if ( !mlt_properties_get_int( properties, "titles" ) )
733 alignment_calculate( geometry );
734
735 // Adjust to consumer scale
736 *width = geometry->sw * *width / geometry->nw;
737 *height = geometry->sh * *height / geometry->nh;
738
739 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
740
741 return ret;
742 }
743
744
745 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, float position )
746 {
747 // Get the properties from the transition
748 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
749
750 // Get the properties from the frame
751 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
752
753 // Structures for geometry
754 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
755
756 // Obtain the normalised width and height from the a_frame
757 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
758 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
759
760 // Now parse the geometries
761 if ( start == NULL )
762 {
763 // Parse the transitions properties
764 start = transition_parse_keys( this, normalised_width, normalised_height );
765
766 // Assign to properties to ensure we get destroyed
767 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
768 }
769 else
770 {
771 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
772 double cycle = mlt_properties_get_double( properties, "cycle" );
773 if ( cycle > 1 )
774 length = cycle;
775 else if ( cycle > 0 )
776 length *= cycle;
777 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
778 }
779
780 // Do the calculation
781 geometry_calculate( this, result, position );
782
783 // Assign normalised info
784 result->nw = normalised_width;
785 result->nh = normalised_height;
786
787 // Now parse the alignment
788 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
789 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
790
791 return start;
792 }
793
794 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
795 {
796 uint8_t *end = src + length;
797 while ( src < end )
798 {
799 *dest ++ = *src ++;
800 *dest ++ = *src ++;
801 }
802 }
803
804 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
805 {
806 // Create a frame to return
807 mlt_frame b_frame = mlt_frame_init( );
808
809 // Get the properties of the a frame
810 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
811
812 // Get the properties of the b frame
813 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
814
815 // Get the position
816 int position = position_calculate( this, frame_position );
817
818 // Destination image
819 uint8_t *dest = NULL;
820
821 // Get the image and dimensions
822 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
823 int width = mlt_properties_get_int( a_props, "width" );
824 int height = mlt_properties_get_int( a_props, "height" );
825
826 // Pointers for copy operation
827 uint8_t *p;
828
829 // Coordinates
830 int w = 0;
831 int h = 0;
832 int x = 0;
833 int y = 0;
834
835 int ss = 0;
836 int ds = 0;
837
838 // Will need to know region to copy
839 struct geometry_s result;
840
841 float delta = delta_calculate( this, a_frame );
842
843 // Calculate the region now
844 composite_calculate( this, &result, a_frame, position + delta / 2 );
845
846 // Need to scale down to actual dimensions
847 x = rint( 0.5 + result.item.x * width / result.nw );
848 y = rint( 0.5 + result.item.y * height / result.nh );
849 w = rint( 0.5 + result.item.w * width / result.nw );
850 h = rint( 0.5 + result.item.h * height / result.nh );
851
852 // Make sure that x and w are even
853 if ( x & 1 )
854 {
855 x --;
856 w += 2;
857 if ( w & 1 )
858 w --;
859 }
860 else if ( w & 1 )
861 {
862 w ++;
863 }
864
865 ds = w * 2;
866 ss = width * 2;
867
868 // Now we need to create a new destination image
869 dest = mlt_pool_alloc( w * h * 2 );
870
871 // Assign to the new frame
872 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
873 mlt_properties_set_int( b_props, "width", w );
874 mlt_properties_set_int( b_props, "height", h );
875
876 if ( y < 0 )
877 {
878 dest += ( ds * -y );
879 h += y;
880 y = 0;
881 }
882
883 if ( y + h > height )
884 h -= ( y + h - height );
885
886 if ( x < 0 )
887 {
888 dest += -x * 2;
889 w += x;
890 x = 0;
891 }
892
893 if ( w > 0 && h > 0 )
894 {
895 // Copy the region of the image
896 p = image + y * ss + x * 2;
897
898 while ( h -- )
899 {
900 inline_memcpy( dest, p, w * 2 );
901 dest += ds;
902 p += ss;
903 }
904 }
905
906 // Assign this position to the b frame
907 mlt_frame_set_position( b_frame, frame_position );
908 mlt_properties_set_int( b_props, "distort", 1 );
909
910 // Return the frame
911 return b_frame;
912 }
913
914 /** Get the image.
915 */
916
917 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
918 {
919 // Get the b frame from the stack
920 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
921
922 // Get the transition from the a frame
923 mlt_transition this = mlt_frame_pop_service( a_frame );
924
925 // Get in and out
926 int out = ( int )mlt_frame_pop_service( a_frame );
927 int in = ( int )mlt_frame_pop_service( a_frame );
928
929 // Get the properties from the transition
930 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
931
932 // TODO: clean up always_active behaviour
933 if ( mlt_properties_get_int( properties, "always_active" ) )
934 {
935 mlt_events_block( properties, properties );
936 mlt_properties_set_int( properties, "in", in );
937 mlt_properties_set_int( properties, "out", out );
938 mlt_events_unblock( properties, properties );
939 }
940
941 // This compositer is yuv422 only
942 *format = mlt_image_yuv422;
943
944 if ( b_frame != NULL )
945 {
946 // Get the properties of the a frame
947 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
948
949 // Get the properties of the b frame
950 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
951
952 // Structures for geometry
953 struct geometry_s result;
954
955 // Calculate the position
956 float position = mlt_properties_get_double( b_props, "relative_position" );
957 float delta = delta_calculate( this, a_frame );
958
959 // Get the image from the b frame
960 uint8_t *image_b = NULL;
961 int width_b = *width;
962 int height_b = *height;
963
964 // Do the calculation
965 composite_calculate( this, &result, a_frame, position );
966
967 // Since we are the consumer of the b_frame, we must pass along these
968 // consumer properties from the a_frame
969 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
970 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
971 mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) );
972 mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) );
973
974 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
975 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
976 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
977 {
978 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
979 if ( !mlt_frame_is_test_card( a_frame ) )
980 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
981 return 0;
982 }
983
984 // Get the image from the a frame
985 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
986
987 // Optimisation - no compositing required
988 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
989 return 0;
990
991 // Need to keep the width/height of the a_frame on the b_frame for titling
992 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
993 {
994 mlt_properties_set_int( a_props, "dest_width", *width );
995 mlt_properties_set_int( a_props, "dest_height", *height );
996 mlt_properties_set_int( b_props, "dest_width", *width );
997 mlt_properties_set_int( b_props, "dest_height", *height );
998 }
999 else
1000 {
1001 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1002 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1003 }
1004
1005 // Special case for titling...
1006 if ( mlt_properties_get_int( properties, "titles" ) )
1007 {
1008 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1009 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1010 width_b = mlt_properties_get_int( a_props, "dest_width" );
1011 height_b = mlt_properties_get_int( a_props, "dest_height" );
1012 }
1013
1014 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
1015 {
1016 uint8_t *dest = *image;
1017 uint8_t *src = image_b;
1018 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
1019 int progressive =
1020 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1021 mlt_properties_get_int( properties, "progressive" );
1022 int field;
1023
1024 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1025 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1026 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
1027 composite_line_fn line_fn = NULL;
1028
1029 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1030 {
1031 // Assume lower field (0) first
1032 float field_position = position + field * delta;
1033
1034 // Do the calculation if we need to
1035 composite_calculate( this, &result, a_frame, field_position );
1036
1037 if ( mlt_properties_get_int( properties, "titles" ) )
1038 {
1039 result.item.w = *width * ( result.item.w / result.nw );
1040 result.nw = result.item.w;
1041 result.item.h = *height * ( result.item.h / result.nh );
1042 result.nh = *height;
1043 result.sw = width_b;
1044 result.sh = height_b;
1045 }
1046
1047 // Align
1048 alignment_calculate( &result );
1049
1050 // Composite the b_frame on the a_frame
1051 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1052 }
1053 }
1054 }
1055 else
1056 {
1057 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1058 }
1059
1060 return 0;
1061 }
1062
1063 /** Composition transition processing.
1064 */
1065
1066 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1067 {
1068 // Get a unique name to store the frame position
1069 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
1070
1071 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1072 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1073 {
1074 mlt_frame_push_service( a_frame, ( void * )mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1075 mlt_frame_push_service( a_frame, ( void * )mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1076
1077 // Assign the current position to the name
1078 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_frame_get_position( a_frame ) );
1079
1080 // Propogate the transition properties to the b frame
1081 mlt_properties_set_double( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1082 }
1083 else
1084 {
1085 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1086 mlt_frame_push_service( a_frame, ( void * )mlt_properties_get_int( props, "in" ) );
1087 mlt_frame_push_service( a_frame, ( void * )mlt_properties_get_int( props, "out" ) );
1088 mlt_properties_set_int( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", mlt_properties_get_int( props, "_frame" ) );
1089
1090 // Assign the current position to the name
1091 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_properties_get_position( MLT_FRAME_PROPERTIES( b_frame ), "relative_position" ) );
1092 }
1093
1094 mlt_frame_push_service( a_frame, this );
1095 mlt_frame_push_frame( a_frame, b_frame );
1096 mlt_frame_push_get_image( a_frame, transition_get_image );
1097 return a_frame;
1098 }
1099
1100 /** Constructor for the filter.
1101 */
1102
1103 mlt_transition transition_composite_init( char *arg )
1104 {
1105 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1106 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1107 {
1108 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1109
1110 this->process = composite_process;
1111
1112 // Default starting motion and zoom
1113 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1114
1115 // Default factory
1116 mlt_properties_set( properties, "factory", "fezzik" );
1117
1118 // Inform apps and framework that this is a video only transition
1119 mlt_properties_set_int( properties, "_transition_type", 1 );
1120
1121 #ifdef USE_MMX
1122 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1123 #endif
1124 }
1125 return this;
1126 }