Minor modifications to compositing options and etv fx
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 struct mlt_geometry_item_s item;
44 int nw; // normalised width
45 int nh; // normalised height
46 int sw; // scaled width, not including consumer scale based upon w/nw
47 int sh; // scaled height, not including consumer scale based upon h/nh
48 int halign; // horizontal alignment: 0=left, 1=center, 2=right
49 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
50 };
51
52 /** Parse the alignment properties into the geometry.
53 */
54
55 static int alignment_parse( char* align )
56 {
57 int ret = 0;
58
59 if ( align == NULL );
60 else if ( isdigit( align[ 0 ] ) )
61 ret = atoi( align );
62 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
63 ret = 1;
64 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
65 ret = 2;
66
67 return ret;
68 }
69
70 /** Calculate real geometry.
71 */
72
73 static void geometry_calculate( mlt_transition this, struct geometry_s *output, float position )
74 {
75 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
76 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
77 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
78 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
79 int length = mlt_geometry_get_length( geometry );
80
81 // Allow wrapping
82 if ( !repeat_off && position >= length && length != 0 )
83 {
84 int section = position / length;
85 position -= section * length;
86 if ( !mirror_off && section % 2 == 1 )
87 position = length - position;
88 }
89
90 // Fetch the key for the position
91 mlt_geometry_fetch( geometry, &output->item, position );
92 }
93
94 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
95 {
96 // Loop variable for property interrogation
97 int i = 0;
98
99 // Get the properties of the transition
100 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
101
102 // Create an empty geometries object
103 mlt_geometry geometry = mlt_geometry_init( );
104
105 // Get the in and out position
106 mlt_position in = mlt_transition_get_in( this );
107 mlt_position out = mlt_transition_get_out( this );
108 int length = out - in + 1;
109
110 // Get the new style geometry string
111 char *property = mlt_properties_get( properties, "geometry" );
112
113 // Allow a geometry repeat cycle
114 if ( mlt_properties_get_int( properties, "cycle" ) )
115 length = mlt_properties_get_int( properties, "cycle" );
116
117 // Parse the geometry if we have one
118 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
119
120 // Check if we're using the old style geometry
121 if ( property == NULL )
122 {
123 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
124 // practical use - while deprecated, it has been slightly extended too - keys can now
125 // be specified out of order, and can be blanked or NULL to simulate removal
126
127 // Structure to use for parsing and inserting
128 struct mlt_geometry_item_s item;
129
130 // Parse the start property
131 item.frame = 0;
132 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
133 mlt_geometry_insert( geometry, &item );
134
135 // Parse the keys in between
136 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
137 {
138 // Get the name of the property
139 char *name = mlt_properties_get_name( properties, i );
140
141 // Check that it's valid
142 if ( !strncmp( name, "key[", 4 ) )
143 {
144 // Get the value of the property
145 char *value = mlt_properties_get_value( properties, i );
146
147 // Determine the frame number
148 item.frame = atoi( name + 4 );
149
150 // Parse and add to the list
151 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
152 mlt_geometry_insert( geometry, &item );
153 else
154 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
155 }
156 }
157
158 // Parse the end
159 item.frame = -1;
160 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
161 mlt_geometry_insert( geometry, &item );
162 }
163
164 return geometry;
165 }
166
167 /** Adjust position according to scaled size and alignment properties.
168 */
169
170 static void alignment_calculate( struct geometry_s *geometry )
171 {
172 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
173 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
174 }
175
176 /** Calculate the position for this frame.
177 */
178
179 static int position_calculate( mlt_transition this, mlt_position position )
180 {
181 // Get the in and out position
182 mlt_position in = mlt_transition_get_in( this );
183
184 // Now do the calcs
185 return position - in;
186 }
187
188 /** Calculate the field delta for this frame - position between two frames.
189 */
190
191 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
192 {
193 // Get the in and out position
194 mlt_position in = mlt_transition_get_in( this );
195 mlt_position out = mlt_transition_get_out( this );
196 float length = out - in + 1;
197
198 // Get the position of the frame
199 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
200 mlt_position position = mlt_properties_get_position( MLT_FRAME_PROPERTIES( frame ), name );
201
202 // Now do the calcs
203 float x = ( float )( position - in ) / length;
204 float y = ( float )( position + 1 - in ) / length;
205
206 return length * ( y - x ) / 2.0;
207 }
208
209 static int get_value( mlt_properties properties, char *preferred, char *fallback )
210 {
211 int value = mlt_properties_get_int( properties, preferred );
212 if ( value == 0 )
213 value = mlt_properties_get_int( properties, fallback );
214 return value;
215 }
216
217 /** A linear threshold determination function.
218 */
219
220 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
221 {
222 if ( a < edge1 )
223 return 0;
224
225 if ( a >= edge2 )
226 return 0x10000;
227
228 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
229 }
230
231 /** A smoother, non-linear threshold determination function.
232 */
233
234 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
235 {
236 if ( a < edge1 )
237 return 0;
238
239 if ( a >= edge2 )
240 return 0x10000;
241
242 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
243
244 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
245 }
246
247 /** Load the luma map from PGM stream.
248 */
249
250 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
251 {
252 uint8_t *data = NULL;
253 while (1)
254 {
255 char line[128];
256 char comment[128];
257 int i = 2;
258 int maxval;
259 int bpp;
260 uint16_t *p;
261
262 line[127] = '\0';
263
264 // get the magic code
265 if ( fgets( line, 127, f ) == NULL )
266 break;
267
268 // skip comments
269 while ( sscanf( line, " #%s", comment ) > 0 )
270 if ( fgets( line, 127, f ) == NULL )
271 break;
272
273 if ( line[0] != 'P' || line[1] != '5' )
274 break;
275
276 // skip white space and see if a new line must be fetched
277 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
278 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
279 break;
280
281 // skip comments
282 while ( sscanf( line, " #%s", comment ) > 0 )
283 if ( fgets( line, 127, f ) == NULL )
284 break;
285
286 // get the dimensions
287 if ( line[0] == 'P' )
288 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
289 else
290 i = sscanf( line, "%d %d %d", width, height, &maxval );
291
292 // get the height value, if not yet
293 if ( i < 2 )
294 {
295 if ( fgets( line, 127, f ) == NULL )
296 break;
297
298 // skip comments
299 while ( sscanf( line, " #%s", comment ) > 0 )
300 if ( fgets( line, 127, f ) == NULL )
301 break;
302
303 i = sscanf( line, "%d", height );
304 if ( i == 0 )
305 break;
306 else
307 i = 2;
308 }
309
310 // get the maximum gray value, if not yet
311 if ( i < 3 )
312 {
313 if ( fgets( line, 127, f ) == NULL )
314 break;
315
316 // skip comments
317 while ( sscanf( line, " #%s", comment ) > 0 )
318 if ( fgets( line, 127, f ) == NULL )
319 break;
320
321 i = sscanf( line, "%d", &maxval );
322 if ( i == 0 )
323 break;
324 }
325
326 // determine if this is one or two bytes per pixel
327 bpp = maxval > 255 ? 2 : 1;
328
329 // allocate temporary storage for the raw data
330 data = mlt_pool_alloc( *width * *height * bpp );
331 if ( data == NULL )
332 break;
333
334 // read the raw data
335 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
336 break;
337
338 // allocate the luma bitmap
339 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
340 if ( *map == NULL )
341 break;
342
343 // proces the raw data into the luma bitmap
344 for ( i = 0; i < *width * *height * bpp; i += bpp )
345 {
346 if ( bpp == 1 )
347 *p++ = data[ i ] << 8;
348 else
349 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
350 }
351
352 break;
353 }
354
355 if ( data != NULL )
356 mlt_pool_release( data );
357 }
358
359 /** Generate a luma map from any YUV image.
360 */
361
362 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
363 {
364 int i;
365
366 // allocate the luma bitmap
367 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
368 if ( *map == NULL )
369 return;
370
371 // proces the image data into the luma bitmap
372 for ( i = 0; i < width * height * 2; i += 2 )
373 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
374 }
375
376
377 /** Composite a source line over a destination line
378 */
379
380 static inline
381 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
382 {
383 register int j;
384 int a, mix;
385
386 for ( j = 0; j < width_src; j ++ )
387 {
388 a = ( alpha == NULL ) ? 255 : *alpha ++;
389 mix = ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + softness, weight + softness );
390 mix = ( mix * a ) >> 8;
391 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
392 dest++;
393 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
394 dest++;
395 }
396 }
397
398 /** Composite function.
399 */
400
401 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
402 {
403 int ret = 0;
404 int i;
405 int x_src = 0, y_src = 0;
406 int32_t weight = ( 1 << 16 ) * ( geometry.item.mix / 100 );
407 int step = ( field > -1 ) ? 2 : 1;
408 int bpp = 2;
409 int stride_src = width_src * bpp;
410 int stride_dest = width_dest * bpp;
411
412 // Adjust to consumer scale
413 int x = rint( 0.5 + geometry.item.x * width_dest / geometry.nw );
414 int y = rint( 0.5 + geometry.item.y * height_dest / geometry.nh );
415 int x_uneven = x & 1;
416
417 // optimization points - no work to do
418 if ( width_src <= 0 || height_src <= 0 )
419 return ret;
420
421 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
422 return ret;
423
424 // crop overlay off the left edge of frame
425 if ( x < 0 )
426 {
427 x_src = -x;
428 width_src -= x_src;
429 x = 0;
430 }
431
432 // crop overlay beyond right edge of frame
433 if ( x + width_src > width_dest )
434 width_src = width_dest - x;
435
436 // crop overlay off the top edge of the frame
437 if ( y < 0 )
438 {
439 y_src = -y;
440 height_src -= y_src;
441 y = 0;
442 }
443
444 // crop overlay below bottom edge of frame
445 if ( y + height_src > height_dest )
446 height_src = height_dest - y;
447
448 // offset pointer into overlay buffer based on cropping
449 p_src += x_src * bpp + y_src * stride_src;
450
451 // offset pointer into frame buffer based upon positive coordinates only!
452 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
453
454 // offset pointer into alpha channel based upon cropping
455 if ( p_alpha )
456 p_alpha += x_src + y_src * stride_src / bpp;
457
458 // offset pointer into luma channel based upon cropping
459 if ( p_luma )
460 p_luma += x_src + y_src * stride_src / bpp;
461
462 // Assuming lower field first
463 // Special care is taken to make sure the b_frame is aligned to the correct field.
464 // field 0 = lower field and y should be odd (y is 0-based).
465 // field 1 = upper field and y should be even.
466 if ( ( field > -1 ) && ( y % 2 == field ) )
467 {
468 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
469 p_dest += stride_dest;
470 else
471 p_dest -= stride_dest;
472 }
473
474 // On the second field, use the other lines from b_frame
475 if ( field == 1 )
476 {
477 p_src += stride_src;
478 if ( p_alpha )
479 p_alpha += stride_src / bpp;
480 height_src--;
481 }
482
483 stride_src *= step;
484 stride_dest *= step;
485 int alpha_stride = stride_src / bpp;
486
487 // Make sure than x and w are even
488 if ( x_uneven )
489 {
490 p_src += 2;
491 width_src --;
492 }
493
494 // now do the compositing only to cropped extents
495 if ( line_fn != NULL )
496 {
497 for ( i = 0; i < height_src; i += step )
498 {
499 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
500
501 p_src += stride_src;
502 p_dest += stride_dest;
503 if ( p_alpha )
504 p_alpha += alpha_stride;
505 if ( p_luma )
506 p_luma += alpha_stride;
507 }
508 }
509 else
510 {
511 for ( i = 0; i < height_src; i += step )
512 {
513 composite_line_yuv( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
514
515 p_src += stride_src;
516 p_dest += stride_dest;
517 if ( p_alpha )
518 p_alpha += alpha_stride;
519 if ( p_luma )
520 p_luma += alpha_stride;
521 }
522 }
523
524 return ret;
525 }
526
527
528 /** Scale 16bit greyscale luma map using nearest neighbor.
529 */
530
531 static inline void
532 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
533 {
534 register int i, j;
535 register int x_step = ( src_width << 16 ) / dest_width;
536 register int y_step = ( src_height << 16 ) / dest_height;
537 register int x, y = 0;
538
539 for ( i = 0; i < dest_height; i++ )
540 {
541 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
542 x = 0;
543
544 for ( j = 0; j < dest_width; j++ )
545 {
546 *dest_buf++ = src[ x >> 16 ] ^ invert;
547 x += x_step;
548 }
549 y += y_step;
550 }
551 }
552
553 static uint16_t* get_luma( mlt_properties properties, int width, int height )
554 {
555 // The cached luma map information
556 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
557 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
558 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
559 int invert = mlt_properties_get_int( properties, "luma_invert" );
560
561 // If the filename property changed, reload the map
562 char *resource = mlt_properties_get( properties, "luma" );
563
564 char temp[ 512 ];
565
566 if ( resource != NULL && strchr( resource, '%' ) )
567 {
568 sprintf( temp, "%s/lumas/%s/%s", mlt_factory_prefix( ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
569 resource = temp;
570 }
571
572 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
573 {
574 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
575 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
576 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
577
578 // Load the original luma once
579 if ( orig_bitmap == NULL )
580 {
581 char *extension = extension = strrchr( resource, '.' );
582
583 // See if it is a PGM
584 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
585 {
586 // Open PGM
587 FILE *f = fopen( resource, "r" );
588 if ( f != NULL )
589 {
590 // Load from PGM
591 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
592 fclose( f );
593
594 // Remember the original size for subsequent scaling
595 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
596 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
597 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
598 }
599 }
600 else
601 {
602 // Get the factory producer service
603 char *factory = mlt_properties_get( properties, "factory" );
604
605 // Create the producer
606 mlt_producer producer = mlt_factory_producer( factory, resource );
607
608 // If we have one
609 if ( producer != NULL )
610 {
611 // Get the producer properties
612 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
613
614 // Ensure that we loop
615 mlt_properties_set( producer_properties, "eof", "loop" );
616
617 // Now pass all producer. properties on the transition down
618 mlt_properties_pass( producer_properties, properties, "luma." );
619
620 // We will get the alpha frame from the producer
621 mlt_frame luma_frame = NULL;
622
623 // Get the luma frame
624 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
625 {
626 uint8_t *luma_image;
627 mlt_image_format luma_format = mlt_image_yuv422;
628
629 // Get image from the luma producer
630 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
631 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
632
633 // Generate the luma map
634 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
635 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
636
637 // Remember the original size for subsequent scaling
638 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
639 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
640 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
641
642 // Cleanup the luma frame
643 mlt_frame_close( luma_frame );
644 }
645
646 // Cleanup the luma producer
647 mlt_producer_close( producer );
648 }
649 }
650 }
651 // Scale luma map
652 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
653 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
654
655 // Remember the scaled luma size to prevent unnecessary scaling
656 mlt_properties_set_int( properties, "_luma.width", width );
657 mlt_properties_set_int( properties, "_luma.height", height );
658 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
659 }
660 return luma_bitmap;
661 }
662
663 /** Get the properly sized image from b_frame.
664 */
665
666 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
667 {
668 int ret = 0;
669 mlt_image_format format = mlt_image_yuv422;
670
671 // Get the properties objects
672 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
673 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
674
675 if ( mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
676 {
677 // Adjust b_frame pixel aspect
678 int normalised_width = geometry->item.w;
679 int normalised_height = geometry->item.h;
680 int real_width = get_value( b_props, "real_width", "width" );
681 int real_height = get_value( b_props, "real_height", "height" );
682 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
683 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
684 int scaled_width = input_ar / output_ar * real_width;
685 int scaled_height = real_height;
686
687 // Now ensure that our images fit in the normalised frame
688 if ( scaled_width > normalised_width )
689 {
690 scaled_height = scaled_height * normalised_width / scaled_width;
691 scaled_width = normalised_width;
692 }
693 if ( scaled_height > normalised_height )
694 {
695 scaled_width = scaled_width * normalised_height / scaled_height;
696 scaled_height = normalised_height;
697 }
698
699 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
700 // ????: Shouln't this be the default behaviour?
701 if ( mlt_properties_get_int( properties, "fill" ) )
702 {
703 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height < normalised_width )
704 {
705 scaled_width = scaled_width * normalised_height / scaled_height;
706 scaled_height = normalised_height;
707 }
708 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
709 {
710 scaled_height = scaled_height * normalised_width / scaled_width;
711 scaled_width = normalised_width;
712 }
713 }
714
715 // Save the new scaled dimensions
716 geometry->sw = scaled_width;
717 geometry->sh = scaled_height;
718 }
719 else
720 {
721 geometry->sw = geometry->item.w;
722 geometry->sh = geometry->item.h;
723 }
724
725 // We want to ensure that we bypass resize now...
726 mlt_properties_set_int( b_props, "distort", 1 );
727
728 // Take into consideration alignment for optimisation
729 if ( !mlt_properties_get_int( properties, "titles" ) )
730 alignment_calculate( geometry );
731
732 // Adjust to consumer scale
733 int x = geometry->item.x * *width / geometry->nw;
734 int y = geometry->item.y * *height / geometry->nh;
735 *width = geometry->sw * *width / geometry->nw;
736 *height = geometry->sh * *height / geometry->nh;
737
738 //x = ( x | 1 ) ^ 1;
739
740 // optimization points - no work to do
741 if ( *width < 1 || *height < 1 )
742 return 1;
743
744 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
745 return 1;
746
747 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
748
749 return ret;
750 }
751
752
753 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, float position )
754 {
755 // Get the properties from the transition
756 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
757
758 // Get the properties from the frame
759 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
760
761 // Structures for geometry
762 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
763
764 // Obtain the normalised width and height from the a_frame
765 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
766 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
767
768 // Now parse the geometries
769 if ( start == NULL )
770 {
771 // Parse the transitions properties
772 start = transition_parse_keys( this, normalised_width, normalised_height );
773
774 // Assign to properties to ensure we get destroyed
775 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
776 }
777 else
778 {
779 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
780 if ( mlt_properties_get_int( properties, "cycle" ) )
781 length = mlt_properties_get_int( properties, "cycle" );
782 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
783 }
784
785 // Do the calculation
786 geometry_calculate( this, result, position );
787
788 // Assign normalised info
789 result->nw = normalised_width;
790 result->nh = normalised_height;
791
792 // Now parse the alignment
793 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
794 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
795
796 return start;
797 }
798
799 static inline void inline_memcpy( uint8_t *dest, uint8_t *src, int length )
800 {
801 uint8_t *end = src + length;
802 while ( src < end )
803 {
804 *dest ++ = *src ++;
805 *dest ++ = *src ++;
806 }
807 }
808
809 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
810 {
811 // Create a frame to return
812 mlt_frame b_frame = mlt_frame_init( );
813
814 // Get the properties of the a frame
815 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
816
817 // Get the properties of the b frame
818 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
819
820 // Get the position
821 int position = position_calculate( this, frame_position );
822
823 // Destination image
824 uint8_t *dest = NULL;
825
826 // Get the image and dimensions
827 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
828 int width = mlt_properties_get_int( a_props, "width" );
829 int height = mlt_properties_get_int( a_props, "height" );
830
831 // Pointers for copy operation
832 uint8_t *p;
833
834 // Coordinates
835 int w = 0;
836 int h = 0;
837 int x = 0;
838 int y = 0;
839
840 int ss = 0;
841 int ds = 0;
842
843 // Will need to know region to copy
844 struct geometry_s result;
845
846 float delta = delta_calculate( this, a_frame );
847
848 // Calculate the region now
849 composite_calculate( this, &result, a_frame, position + delta / 2 );
850
851 // Need to scale down to actual dimensions
852 x = rint( 0.5 + result.item.x * width / result.nw );
853 y = rint( 0.5 + result.item.y * height / result.nh );
854 w = rint( 0.5 + result.item.w * width / result.nw );
855 h = rint( 0.5 + result.item.h * height / result.nh );
856
857 // Make sure that x and w are even
858 if ( x & 1 )
859 {
860 x --;
861 w += 2;
862 if ( w & 1 )
863 w --;
864 }
865 else if ( w & 1 )
866 {
867 w ++;
868 }
869
870 ds = w * 2;
871 ss = width * 2;
872
873 // Now we need to create a new destination image
874 dest = mlt_pool_alloc( w * h * 2 );
875
876 // Assign to the new frame
877 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
878 mlt_properties_set_int( b_props, "width", w );
879 mlt_properties_set_int( b_props, "height", h );
880
881 if ( y < 0 )
882 {
883 dest += ( ds * -y );
884 h += y;
885 y = 0;
886 }
887
888 if ( y + h > height )
889 h -= ( y + h - height );
890
891 if ( x < 0 )
892 {
893 dest += -x * 2;
894 w += x;
895 x = 0;
896 }
897
898 if ( w > 0 && h > 0 )
899 {
900 // Copy the region of the image
901 p = image + y * ss + x * 2;
902
903 while ( h -- )
904 {
905 inline_memcpy( dest, p, w * 2 );
906 dest += ds;
907 p += ss;
908 }
909 }
910
911 // Assign this position to the b frame
912 mlt_frame_set_position( b_frame, frame_position );
913 mlt_properties_set_int( b_props, "distort", 1 );
914
915 // Return the frame
916 return b_frame;
917 }
918
919 /** Get the image.
920 */
921
922 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
923 {
924 // Get the b frame from the stack
925 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
926
927 // Get the transition from the a frame
928 mlt_transition this = mlt_frame_pop_service( a_frame );
929
930 // This compositer is yuv422 only
931 *format = mlt_image_yuv422;
932
933 // Get the image from the a frame
934 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
935
936 // Get the properties from the transition
937 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
938
939 if ( b_frame != NULL )
940 {
941 // Get the properties of the a frame
942 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
943
944 // Get the properties of the b frame
945 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
946
947 // Structures for geometry
948 struct geometry_s result;
949
950 // Calculate the position
951 float position = mlt_properties_get_double( b_props, "relative_position" );
952 float delta = delta_calculate( this, a_frame );
953
954 // Get the image from the b frame
955 uint8_t *image_b = NULL;
956 int width_b = *width;
957 int height_b = *height;
958
959 // Do the calculation
960 composite_calculate( this, &result, a_frame, position );
961
962 // Optimisation - no compositing required
963 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
964 return 0;
965
966 // Need to keep the width/height of the a_frame on the b_frame for titling
967 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
968 {
969 mlt_properties_set_int( a_props, "dest_width", *width );
970 mlt_properties_set_int( a_props, "dest_height", *height );
971 mlt_properties_set_int( b_props, "dest_width", *width );
972 mlt_properties_set_int( b_props, "dest_height", *height );
973 }
974 else
975 {
976 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
977 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
978 }
979
980 // Since we are the consumer of the b_frame, we must pass along these
981 // consumer properties from the a_frame
982 mlt_properties_set_double( b_props, "consumer_deinterlace", mlt_properties_get_double( a_props, "consumer_deinterlace" ) );
983 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
984 mlt_properties_set_int( b_props, "normalised_width", mlt_properties_get_double( a_props, "normalised_width" ) );
985 mlt_properties_set_int( b_props, "normalised_height", mlt_properties_get_double( a_props, "normalised_height" ) );
986
987 // Special case for titling...
988 if ( mlt_properties_get_int( properties, "titles" ) )
989 {
990 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
991 mlt_properties_set( b_props, "rescale.interp", "hyper" );
992 width_b = mlt_properties_get_int( a_props, "dest_width" );
993 height_b = mlt_properties_get_int( a_props, "dest_height" );
994 }
995
996 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
997 {
998 uint8_t *dest = *image;
999 uint8_t *src = image_b;
1000 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
1001 int progressive =
1002 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1003 mlt_properties_get_int( properties, "progressive" );
1004 int field;
1005
1006 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1007 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1008 //composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : NULL;
1009 composite_line_fn line_fn = NULL;
1010
1011 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1012 {
1013 // Assume lower field (0) first
1014 float field_position = position + field * delta;
1015
1016 // Do the calculation if we need to
1017 composite_calculate( this, &result, a_frame, field_position );
1018
1019 if ( mlt_properties_get_int( properties, "titles" ) )
1020 {
1021 result.item.w = *width * ( result.item.w / result.nw );
1022 result.nw = result.item.w;
1023 result.item.h = *height * ( result.item.h / result.nh );
1024 result.nh = *height;
1025 result.sw = width_b;
1026 result.sh = height_b;
1027 }
1028
1029 // Align
1030 alignment_calculate( &result );
1031
1032 // Composite the b_frame on the a_frame
1033 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1034 }
1035 }
1036 }
1037
1038 return 0;
1039 }
1040
1041 /** Composition transition processing.
1042 */
1043
1044 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1045 {
1046 // Get a unique name to store the frame position
1047 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
1048
1049 // Assign the current position to the name
1050 mlt_properties_set_position( MLT_FRAME_PROPERTIES( a_frame ), name, mlt_frame_get_position( a_frame ) );
1051
1052 // Propogate the transition properties to the b frame
1053 mlt_properties_set_double( MLT_FRAME_PROPERTIES( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1054
1055 mlt_frame_push_service( a_frame, this );
1056 mlt_frame_push_frame( a_frame, b_frame );
1057 mlt_frame_push_get_image( a_frame, transition_get_image );
1058 return a_frame;
1059 }
1060
1061 /** Constructor for the filter.
1062 */
1063
1064 mlt_transition transition_composite_init( char *arg )
1065 {
1066 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1067 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1068 {
1069 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1070
1071 this->process = composite_process;
1072
1073 // Default starting motion and zoom
1074 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1075
1076 // Default factory
1077 mlt_properties_set( properties, "factory", "fezzik" );
1078
1079 #ifdef USE_MMX
1080 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1081 #endif
1082 }
1083 return this;
1084 }