2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include "transition_composite.h"
22 #include <framework/mlt_frame.h>
41 /** Parse a value from a geometry string.
44 static float parse_value( char **ptr
, int normalisation
, char delim
, float defaults
)
46 float value
= defaults
;
48 if ( *ptr
!= NULL
&& **ptr
!= '\0' )
51 value
= strtod( *ptr
, &end
);
55 value
= ( value
/ 100.0 ) * normalisation
;
56 while ( *end
== delim
|| *end
== '%' )
65 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
66 expressed as a percentage by appending a % after the value, otherwise values are
67 assumed to be relative to the normalised dimensions of the consumer.
70 static void geometry_parse( struct geometry_s
*geometry
, struct geometry_s
*defaults
, char *property
, int nw
, int nh
)
72 // Assign normalised width and height
76 // Assign from defaults if available
77 if ( defaults
!= NULL
)
79 geometry
->x
= defaults
->x
;
80 geometry
->y
= defaults
->y
;
81 geometry
->w
= defaults
->w
;
82 geometry
->h
= defaults
->h
;
83 geometry
->mix
= defaults
->mix
;
90 // Parse the geomtry string
91 if ( property
!= NULL
)
94 geometry
->x
= parse_value( &ptr
, nw
, ',', geometry
->x
);
95 geometry
->y
= parse_value( &ptr
, nh
, ':', geometry
->y
);
96 geometry
->w
= parse_value( &ptr
, nw
, 'x', geometry
->w
);
97 geometry
->h
= parse_value( &ptr
, nh
, ':', geometry
->h
);
98 geometry
->mix
= parse_value( &ptr
, 100, ' ', geometry
->mix
);
102 /** Calculate real geometry.
105 static void geometry_calculate( struct geometry_s
*output
, struct geometry_s
*in
, struct geometry_s
*out
, float position
)
107 // Calculate this frames geometry
110 output
->x
= in
->x
+ ( out
->x
- in
->x
) * position
;
111 output
->y
= in
->y
+ ( out
->y
- in
->y
) * position
;
112 output
->w
= in
->w
+ ( out
->w
- in
->w
) * position
;
113 output
->h
= in
->h
+ ( out
->h
- in
->h
) * position
;
114 output
->mix
= in
->mix
+ ( out
->mix
- in
->mix
) * position
;
117 /** Calculate the position for this frame.
120 static float position_calculate( mlt_transition
this, mlt_frame frame
)
122 // Get the in and out position
123 mlt_position in
= mlt_transition_get_in( this );
124 mlt_position out
= mlt_transition_get_out( this );
126 // Get the position of the frame
127 mlt_position position
= mlt_frame_get_position( frame
);
130 return ( float )( position
- in
) / ( float )( out
- in
+ 1 );
133 static int get_value( mlt_properties properties
, char *preferred
, char *fallback
)
135 int value
= mlt_properties_get_int( properties
, preferred
);
137 value
= mlt_properties_get_int( properties
, fallback
);
141 /** Composite function.
144 static int composite_yuv( uint8_t *p_dest
, int width_dest
, int height_dest
, uint8_t *p_src
, int width_src
, int height_src
, uint8_t *p_alpha
, struct geometry_s geometry
)
148 int x_src
= 0, y_src
= 0;
149 float weight
= geometry
.mix
/ 100;
150 int x
= ( geometry
.x
* width_dest
) / geometry
.nw
;
151 int y
= ( geometry
.y
* height_dest
) / geometry
.nh
;
152 int stride_src
= width_src
* 2;
153 int stride_dest
= width_dest
* 2;
157 // optimization points - no work to do
158 if ( width_src
<= 0 || height_src
<= 0 )
161 if ( ( x
< 0 && -x
>= width_src
) || ( y
< 0 && -y
>= height_src
) )
164 // crop overlay off the left edge of frame
172 // crop overlay beyond right edge of frame
173 else if ( x
+ width_src
> width_dest
)
174 width_src
= width_dest
- x
;
176 // crop overlay off the top edge of the frame
182 // crop overlay below bottom edge of frame
183 else if ( y
+ height_src
> height_dest
)
184 height_src
= height_dest
- y
;
186 // offset pointer into overlay buffer based on cropping
187 p_src
+= x_src
* 2 + y_src
* stride_src
;
189 // offset pointer into frame buffer based upon positive, even coordinates only!
190 p_dest
+= ( x
< 0 ?
0 : x
) * 2 + ( y
< 0 ?
0 : y
) * stride_dest
;
192 // offset pointer into alpha channel based upon cropping
194 p_alpha
+= x_src
+ y_src
* stride_src
/ 2;
199 uint8_t *z
= p_alpha
;
206 // now do the compositing only to cropped extents
207 for ( i
= 0; i
< height_src
; i
++ )
214 for ( j
= 0; j
< width_src
; j
++ )
218 a
= ( z
== NULL
) ?
255 : *z
++;
219 value
= ( weight
* ( float ) a
/ 255.0 );
220 *o
++ = (uint8_t)( Y
* value
+ *q
++ * ( 1 - value
) );
221 *o
++ = (uint8_t)( UV
* value
+ *q
++ * ( 1 - value
) );
225 p_dest
+= stride_dest
;
227 p_alpha
+= stride_src
/ 2;
234 /** Get the properly sized image from b_frame.
237 static int get_b_frame_image( mlt_frame b_frame
, uint8_t **image
, int *width
, int *height
, struct geometry_s
*geometry
)
240 mlt_image_format format
= mlt_image_yuv422
;
242 // Compute the dimensioning rectangle
243 mlt_properties b_props
= mlt_frame_properties( b_frame
);
244 mlt_transition
this = mlt_properties_get_data( b_props
, "transition_composite", NULL
);
245 mlt_properties properties
= mlt_transition_properties( this );
247 if ( mlt_properties_get( properties
, "distort" ) == NULL
)
249 // Now do additional calcs based on real_width/height etc
250 //int normalised_width = mlt_properties_get_int( b_props, "normalised_width" );
251 //int normalised_height = mlt_properties_get_int( b_props, "normalised_height" );
252 int normalised_width
= geometry
->w
;
253 int normalised_height
= geometry
->h
;
254 int real_width
= get_value( b_props
, "real_width", "width" );
255 int real_height
= get_value( b_props
, "real_height", "height" );
256 double input_ar
= mlt_frame_get_aspect_ratio( b_frame
);
257 double output_ar
= mlt_properties_get_double( b_props
, "consumer_aspect_ratio" );
258 int scaled_width
= ( input_ar
> output_ar ? input_ar
/ output_ar
: output_ar
/ input_ar
) * real_width
;
259 int scaled_height
= ( input_ar
> output_ar ? input_ar
/ output_ar
: output_ar
/ input_ar
) * real_height
;
261 // Now ensure that our images fit in the normalised frame
262 if ( scaled_width
> normalised_width
)
264 scaled_height
= scaled_height
* normalised_width
/ scaled_width
;
265 scaled_width
= normalised_width
;
267 if ( scaled_height
> normalised_height
)
269 scaled_width
= scaled_width
* normalised_height
/ scaled_height
;
270 scaled_height
= normalised_height
;
274 if ( scaled_height
== normalised_height
)
275 scaled_width
= normalised_width
;
277 // Now we need to align to the geometry
278 if ( scaled_width
<= geometry
->w
&& scaled_height
<= geometry
->h
)
280 // TODO: Should take into account requested alignment here...
281 // Assume centred alignment for now
283 geometry
->x
= geometry
->x
+ ( geometry
->w
- scaled_width
) / 2;
284 geometry
->y
= geometry
->y
+ ( geometry
->h
- scaled_height
) / 2;
285 geometry
->w
= scaled_width
;
286 geometry
->h
= scaled_height
;
287 mlt_properties_set( b_props
, "distort", "true" );
291 mlt_properties_set( b_props
, "distort", "true" );
296 // We want to ensure that we bypass resize now...
297 mlt_properties_set( b_props
, "distort", "true" );
300 int x
= ( geometry
->x
* *width
) / geometry
->nw
;
301 int y
= ( geometry
->y
* *height
) / geometry
->nh
;
302 *width
= ( geometry
->w
* *width
) / geometry
->nw
;
303 *height
= ( geometry
->h
* *height
) / geometry
->nh
;
307 // optimization points - no work to do
308 if ( *width
<= 0 || *height
<= 0 )
311 if ( ( x
< 0 && -x
>= *width
) || ( y
< 0 && -y
>= *height
) )
314 ret
= mlt_frame_get_image( b_frame
, image
, &format
, width
, height
, 1 /* writable */ );
323 static int transition_get_image( mlt_frame a_frame
, uint8_t **image
, mlt_image_format
*format
, int *width
, int *height
, int writable
)
325 // Get the b frame from the stack
326 mlt_frame b_frame
= mlt_frame_pop_frame( a_frame
);
328 // This compositer is yuv422 only
329 *format
= mlt_image_yuv422
;
331 // Get the image from the a frame
332 mlt_frame_get_image( a_frame
, image
, format
, width
, height
, 1 );
334 if ( b_frame
!= NULL
)
336 // Get the properties of the a frame
337 mlt_properties a_props
= mlt_frame_properties( a_frame
);
339 // Get the properties of the b frame
340 mlt_properties b_props
= mlt_frame_properties( b_frame
);
342 // Get the transition from the b frame
343 mlt_transition
this = mlt_properties_get_data( b_props
, "transition_composite", NULL
);
345 // Get the properties from the transition
346 mlt_properties properties
= mlt_transition_properties( this );
348 // Structures for geometry
349 struct geometry_s result
;
350 struct geometry_s start
;
351 struct geometry_s end
;
353 // Calculate the position
354 float position
= position_calculate( this, a_frame
);
356 // Obtain the normalised width and height from the a_frame
357 int normalised_width
= mlt_properties_get_int( a_props
, "normalised_width" );
358 int normalised_height
= mlt_properties_get_int( a_props
, "normalised_height" );
360 // Now parse the geometries
361 geometry_parse( &start
, NULL
, mlt_properties_get( properties
, "start" ), normalised_width
, normalised_height
);
362 geometry_parse( &end
, &start
, mlt_properties_get( properties
, "end" ), normalised_width
, normalised_height
);
364 // Do the calculation
365 geometry_calculate( &result
, &start
, &end
, position
);
367 // Since we are the consumer of the b_frame, we must pass along these
368 // consumer properties from the a_frame
369 mlt_properties_set_double( b_props
, "consumer_aspect_ratio", mlt_properties_get_double( a_props
, "consumer_aspect_ratio" ) );
370 mlt_properties_set_double( b_props
, "consumer_scale", mlt_properties_get_double( a_props
, "consumer_scale" ) );
372 // Get the image from the b frame
374 int width_b
= *width
;
375 int height_b
= *height
;
376 if ( get_b_frame_image( b_frame
, &image_b
, &width_b
, &height_b
, &result
) == 0 )
378 uint8_t *alpha
= mlt_frame_get_alpha_mask( b_frame
);
380 // Composite the b_frame on the a_frame
381 composite_yuv( *image
, *width
, *height
, image_b
, width_b
, height_b
, alpha
, result
);
388 /** Composition transition processing.
391 static mlt_frame
composite_process( mlt_transition
this, mlt_frame a_frame
, mlt_frame b_frame
)
393 // Propogate the transition properties to the b frame
394 mlt_properties b_props
= mlt_frame_properties( b_frame
);
395 mlt_properties_set_data( b_props
, "transition_composite", this, 0, NULL
, NULL
);
396 mlt_frame_push_get_image( a_frame
, transition_get_image
);
397 mlt_frame_push_frame( a_frame
, b_frame
);
401 /** Constructor for the filter.
404 mlt_transition
transition_composite_init( char *arg
)
406 mlt_transition
this = calloc( sizeof( struct mlt_transition_s
), 1 );
407 if ( this != NULL
&& mlt_transition_init( this, NULL
) == 0 )
409 this->process
= composite_process
;
410 mlt_properties_set( mlt_transition_properties( this ), "start", arg
!= NULL ? arg
: "85%,5%:10%x10%" );
411 mlt_properties_set( mlt_transition_properties( this ), "end", "" );