48d1c6ef0bda1a3b4d97507c88e69a6e55fbb190
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 float position;
44 float mix;
45 int nw; // normalised width
46 int nh; // normalised height
47 int sw; // scaled width, not including consumer scale based upon w/nw
48 int sh; // scaled height, not including consumer scale based upon h/nh
49 float x;
50 float y;
51 float w;
52 float h;
53 int halign; // horizontal alignment: 0=left, 1=center, 2=right
54 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
55 int distort;
56 struct geometry_s *next;
57 };
58
59 /** Parse a value from a geometry string.
60 */
61
62 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
63 {
64 float value = defaults;
65
66 if ( *ptr != NULL && **ptr != '\0' )
67 {
68 char *end = NULL;
69 value = strtod( *ptr, &end );
70 if ( end != NULL )
71 {
72 if ( *end == '%' )
73 value = ( value / 100.0 ) * normalisation;
74 while ( *end == delim || *end == '%' )
75 end ++;
76 }
77 *ptr = end;
78 }
79
80 return value;
81 }
82
83 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
84 expressed as a percentage by appending a % after the value, otherwise values are
85 assumed to be relative to the normalised dimensions of the consumer.
86 */
87
88 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
89 {
90 // Assign normalised width and height
91 geometry->nw = nw;
92 geometry->nh = nh;
93
94 // Assign from defaults if available
95 if ( defaults != NULL )
96 {
97 geometry->x = defaults->x;
98 geometry->y = defaults->y;
99 geometry->w = geometry->sw = defaults->w;
100 geometry->h = geometry->sh = defaults->h;
101 geometry->distort = defaults->distort;
102 geometry->mix = defaults->mix;
103 defaults->next = geometry;
104 }
105 else
106 {
107 geometry->mix = 100;
108 }
109
110 // Parse the geomtry string
111 if ( property != NULL && strcmp( property, "" ) )
112 {
113 char *ptr = property;
114 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
115 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
116 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
117 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
118 if ( *ptr == '!' )
119 {
120 geometry->distort = 1;
121 ptr ++;
122 if ( *ptr == ':' )
123 ptr ++;
124 }
125 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
126 }
127 }
128
129 /** Calculate real geometry.
130 */
131
132 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
133 {
134 // Search in for position
135 struct geometry_s *out = in->next;
136
137 if ( position >= 1.0 )
138 {
139 int section = floor( position );
140 position -= section;
141 if ( section % 2 == 1 )
142 position = 1.0 - position;
143 }
144
145 while ( out->next != NULL )
146 {
147 if ( position >= in->position && position < out->position )
148 break;
149
150 in = out;
151 out = in->next;
152 }
153
154 position = ( position - in->position ) / ( out->position - in->position );
155
156 // Calculate this frames geometry
157 output->nw = in->nw;
158 output->nh = in->nh;
159 output->x = in->x + ( out->x - in->x ) * position;
160 output->y = in->y + ( out->y - in->y ) * position;
161 output->w = in->w + ( out->w - in->w ) * position;
162 output->h = in->h + ( out->h - in->h ) * position;
163 output->mix = in->mix + ( out->mix - in->mix ) * position;
164 output->distort = in->distort;
165
166 // DRD> These break on negative values. I do not think they are needed
167 // since yuv_composite takes care of YUYV group alignment
168 //output->x = ( int )floor( output->x ) & 0xfffffffe;
169 //output->w = ( int )floor( output->w ) & 0xfffffffe;
170 //output->sw &= 0xfffffffe;
171 }
172
173 void transition_destroy_keys( void *arg )
174 {
175 struct geometry_s *ptr = arg;
176 struct geometry_s *next = NULL;
177
178 while ( ptr != NULL )
179 {
180 next = ptr->next;
181 free( ptr );
182 ptr = next;
183 }
184 }
185
186 static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
187 {
188 // Loop variable for property interrogation
189 int i = 0;
190
191 // Get the properties of the transition
192 mlt_properties properties = mlt_transition_properties( this );
193
194 // Get the in and out position
195 mlt_position in = mlt_transition_get_in( this );
196 mlt_position out = mlt_transition_get_out( this );
197
198 // Create the start
199 struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
200
201 // Create the end (we always need two entries)
202 struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
203
204 // Pointer
205 struct geometry_s *ptr = start;
206
207 // Parse the start property
208 geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
209
210 // Parse the keys in between
211 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
212 {
213 // Get the name of the property
214 char *name = mlt_properties_get_name( properties, i );
215
216 // Check that it's valid
217 if ( !strncmp( name, "key[", 4 ) )
218 {
219 // Get the value of the property
220 char *value = mlt_properties_get_value( properties, i );
221
222 // Determine the frame number
223 int frame = atoi( name + 4 );
224
225 // Determine the position
226 float position = 0;
227
228 if ( frame >= 0 && frame < ( out - in ) )
229 position = ( float )frame / ( float )( out - in + 1 );
230 else if ( frame < 0 && - frame < ( out - in ) )
231 position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
232
233 // For now, we'll exclude all keys received out of order
234 if ( position > ptr->position )
235 {
236 // Create a new geometry
237 struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
238
239 // Parse and add to the list
240 geometry_parse( temp, ptr, value, normalised_width, normalised_height );
241
242 // Assign the position
243 temp->position = position;
244
245 // Allow the next to be appended after this one
246 ptr = temp;
247 }
248 else
249 {
250 fprintf( stderr, "Key out of order - skipping %s\n", name );
251 }
252 }
253 }
254
255 // Parse the end
256 geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
257 if ( out > 0 )
258 end->position = ( float )( out - in ) / ( float )( out - in + 1 );
259 else
260 end->position = 1;
261
262 // Assign to properties to ensure we get destroyed
263 mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
264
265 return start;
266 }
267
268 /** Parse the alignment properties into the geometry.
269 */
270
271 static int alignment_parse( char* align )
272 {
273 int ret = 0;
274
275 if ( align == NULL );
276 else if ( isdigit( align[ 0 ] ) )
277 ret = atoi( align );
278 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
279 ret = 1;
280 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
281 ret = 2;
282
283 return ret;
284 }
285
286 /** Adjust position according to scaled size and alignment properties.
287 */
288
289 static void alignment_calculate( struct geometry_s *geometry )
290 {
291 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2;
292 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2;
293 }
294
295 /** Calculate the position for this frame.
296 */
297
298 static float position_calculate( mlt_transition this, mlt_position position )
299 {
300 // Get the in and out position
301 mlt_position in = mlt_transition_get_in( this );
302 mlt_position out = mlt_transition_get_out( this );
303
304 // Now do the calcs
305 return ( float )( position - in ) / ( float )( out - in + 1 );
306 }
307
308 /** Calculate the field delta for this frame - position between two frames.
309 */
310
311 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
312 {
313 // Get the in and out position
314 mlt_position in = mlt_transition_get_in( this );
315 mlt_position out = mlt_transition_get_out( this );
316
317 // Get the position of the frame
318 mlt_position position = mlt_frame_get_position( frame );
319
320 // Now do the calcs
321 float x = ( float )( position - in ) / ( float )( out - in + 1 );
322 float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
323
324 return ( y - x ) / 2.0;
325 }
326
327 static int get_value( mlt_properties properties, char *preferred, char *fallback )
328 {
329 int value = mlt_properties_get_int( properties, preferred );
330 if ( value == 0 )
331 value = mlt_properties_get_int( properties, fallback );
332 return value;
333 }
334
335 /** A linear threshold determination function.
336 */
337
338 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
339 {
340 if ( a < edge1 )
341 return 0;
342
343 if ( a >= edge2 )
344 return 0x10000;
345
346 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
347 }
348
349 /** A smoother, non-linear threshold determination function.
350 */
351
352 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
353 {
354 if ( a < edge1 )
355 return 0;
356
357 if ( a >= edge2 )
358 return 0x10000;
359
360 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
361
362 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
363 }
364
365 /** Load the luma map from PGM stream.
366 */
367
368 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
369 {
370 uint8_t *data = NULL;
371 while (1)
372 {
373 char line[128];
374 char comment[128];
375 int i = 2;
376 int maxval;
377 int bpp;
378 uint16_t *p;
379
380 line[127] = '\0';
381
382 // get the magic code
383 if ( fgets( line, 127, f ) == NULL )
384 break;
385
386 // skip comments
387 while ( sscanf( line, " #%s", comment ) > 0 )
388 if ( fgets( line, 127, f ) == NULL )
389 break;
390
391 if ( line[0] != 'P' || line[1] != '5' )
392 break;
393
394 // skip white space and see if a new line must be fetched
395 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
396 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
397 break;
398
399 // skip comments
400 while ( sscanf( line, " #%s", comment ) > 0 )
401 if ( fgets( line, 127, f ) == NULL )
402 break;
403
404 // get the dimensions
405 if ( line[0] == 'P' )
406 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
407 else
408 i = sscanf( line, "%d %d %d", width, height, &maxval );
409
410 // get the height value, if not yet
411 if ( i < 2 )
412 {
413 if ( fgets( line, 127, f ) == NULL )
414 break;
415
416 // skip comments
417 while ( sscanf( line, " #%s", comment ) > 0 )
418 if ( fgets( line, 127, f ) == NULL )
419 break;
420
421 i = sscanf( line, "%d", height );
422 if ( i == 0 )
423 break;
424 else
425 i = 2;
426 }
427
428 // get the maximum gray value, if not yet
429 if ( i < 3 )
430 {
431 if ( fgets( line, 127, f ) == NULL )
432 break;
433
434 // skip comments
435 while ( sscanf( line, " #%s", comment ) > 0 )
436 if ( fgets( line, 127, f ) == NULL )
437 break;
438
439 i = sscanf( line, "%d", &maxval );
440 if ( i == 0 )
441 break;
442 }
443
444 // determine if this is one or two bytes per pixel
445 bpp = maxval > 255 ? 2 : 1;
446
447 // allocate temporary storage for the raw data
448 data = mlt_pool_alloc( *width * *height * bpp );
449 if ( data == NULL )
450 break;
451
452 // read the raw data
453 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
454 break;
455
456 // allocate the luma bitmap
457 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
458 if ( *map == NULL )
459 break;
460
461 // proces the raw data into the luma bitmap
462 for ( i = 0; i < *width * *height * bpp; i += bpp )
463 {
464 if ( bpp == 1 )
465 *p++ = data[ i ] << 8;
466 else
467 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
468 }
469
470 break;
471 }
472
473 if ( data != NULL )
474 mlt_pool_release( data );
475 }
476
477 /** Generate a luma map from any YUV image.
478 */
479
480 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
481 {
482 int i;
483
484 // allocate the luma bitmap
485 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
486 if ( *map == NULL )
487 return;
488
489 // proces the image data into the luma bitmap
490 for ( i = 0; i < width * height * 2; i += 2 )
491 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
492 }
493
494
495 /** Composite a source line over a destination line
496 */
497
498 static inline
499 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
500 {
501 register int j;
502 int a, mix;
503
504 for ( j = 0; j < width_src; j ++ )
505 {
506 a = ( alpha == NULL ) ? 255 : *alpha ++;
507 mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight );
508 mix = ( mix * ( a + 1 ) ) >> 8;
509 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
510 dest++;
511 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
512 dest++;
513 }
514 }
515
516 /** Composite function.
517 */
518
519 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
520 {
521 int ret = 0;
522 int i;
523 int x_src = 0, y_src = 0;
524 int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
525 int step = ( field > -1 ) ? 2 : 1;
526 int bpp = 2;
527 int stride_src = width_src * bpp * step;
528 int stride_dest = width_dest * bpp * step;
529 int alpha_stride = stride_src / bpp;
530
531 // Adjust to consumer scale
532 int x = geometry.x * width_dest / geometry.nw;
533 int y = geometry.y * height_dest / geometry.nh;
534
535 // Align x to a full YUYV group
536 x &= 0xfffffffe;
537 width_src &= 0xfffffffe;
538
539 // optimization points - no work to do
540 if ( width_src <= 0 || height_src <= 0 )
541 return ret;
542
543 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
544 return ret;
545
546 // crop overlay off the left edge of frame
547 if ( x < 0 )
548 {
549 x_src = -x;
550 width_src -= x_src;
551 x = 0;
552 }
553
554 // crop overlay beyond right edge of frame
555 else if ( x + width_src > width_dest )
556 width_src = width_dest - x;
557
558 // crop overlay off the top edge of the frame
559 if ( y < 0 )
560 {
561 y_src = -y;
562 height_src -= y_src;
563 }
564 // crop overlay below bottom edge of frame
565 else if ( y + height_src > height_dest )
566 height_src = height_dest - y;
567
568 // offset pointer into overlay buffer based on cropping
569 p_src += x_src * bpp + y_src * stride_src;
570
571 // offset pointer into frame buffer based upon positive coordinates only!
572 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
573
574 // offset pointer into alpha channel based upon cropping
575 if ( p_alpha )
576 p_alpha += x_src + y_src * stride_src / bpp;
577
578 // offset pointer into luma channel based upon cropping
579 if ( p_luma )
580 p_luma += x_src + y_src * stride_src / bpp;
581
582 // Assuming lower field first
583 // Special care is taken to make sure the b_frame is aligned to the correct field.
584 // field 0 = lower field and y should be odd (y is 0-based).
585 // field 1 = upper field and y should be even.
586 if ( ( field > -1 ) && ( y % 2 == field ) )
587 {
588 //fprintf( stderr, "field %d y %d\n", field, y );
589 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
590 p_dest += stride_dest;
591 else
592 p_dest -= stride_dest;
593 }
594
595 // On the second field, use the other lines from b_frame
596 if ( field == 1 )
597 {
598 p_src += stride_src;
599 if ( p_alpha )
600 p_alpha += stride_src / bpp;
601 height_src--;
602 }
603
604 if ( line_fn == NULL )
605 line_fn = composite_line_yuv;
606
607 // now do the compositing only to cropped extents
608 for ( i = 0; i < height_src; i += step )
609 {
610 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
611
612 p_src += stride_src;
613 p_dest += stride_dest;
614 if ( p_alpha )
615 p_alpha += alpha_stride;
616 if ( p_luma )
617 p_luma += alpha_stride;
618 }
619
620 return ret;
621 }
622
623
624 /** Scale 16bit greyscale luma map using nearest neighbor.
625 */
626
627 static inline void
628 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height )
629 {
630 register int i, j;
631 register int x_step = ( src_width << 16 ) / dest_width;
632 register int y_step = ( src_height << 16 ) / dest_height;
633 register int x, y = 0;
634
635 for ( i = 0; i < dest_height; i++ )
636 {
637 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
638 x = 0;
639
640 for ( j = 0; j < dest_width; j++ )
641 {
642 *dest_buf++ = src[ x >> 16 ];
643 x += x_step;
644 }
645 y += y_step;
646 }
647 }
648
649 static uint16_t* get_luma( mlt_properties properties, int width, int height )
650 {
651 // The cached luma map information
652 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
653 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
654 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
655
656 // If the filename property changed, reload the map
657 char *resource = mlt_properties_get( properties, "luma" );
658
659 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
660 {
661 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
662 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
663 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
664
665 // Load the original luma once
666 if ( orig_bitmap == NULL )
667 {
668 char *extension = extension = strrchr( resource, '.' );
669
670 // See if it is a PGM
671 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
672 {
673 // Open PGM
674 FILE *f = fopen( resource, "r" );
675 if ( f != NULL )
676 {
677 // Load from PGM
678 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
679 fclose( f );
680
681 // Remember the original size for subsequent scaling
682 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
683 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
684 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
685 }
686 }
687 else
688 {
689 // Get the factory producer service
690 char *factory = mlt_properties_get( properties, "factory" );
691
692 // Create the producer
693 mlt_producer producer = mlt_factory_producer( factory, resource );
694
695 // If we have one
696 if ( producer != NULL )
697 {
698 // Get the producer properties
699 mlt_properties producer_properties = mlt_producer_properties( producer );
700
701 // Ensure that we loop
702 mlt_properties_set( producer_properties, "eof", "loop" );
703
704 // Now pass all producer. properties on the transition down
705 mlt_properties_pass( producer_properties, properties, "luma." );
706
707 // We will get the alpha frame from the producer
708 mlt_frame luma_frame = NULL;
709
710 // Get the luma frame
711 if ( mlt_service_get_frame( mlt_producer_service( producer ), &luma_frame, 0 ) == 0 )
712 {
713 uint8_t *luma_image;
714 mlt_image_format luma_format = mlt_image_yuv422;
715
716 // Get image from the luma producer
717 mlt_properties_set( mlt_frame_properties( luma_frame ), "rescale.interp", "none" );
718 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
719
720 // Generate the luma map
721 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
722 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
723
724 // Remember the original size for subsequent scaling
725 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
726 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
727 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
728
729 // Cleanup the luma frame
730 mlt_frame_close( luma_frame );
731 }
732
733 // Cleanup the luma producer
734 mlt_producer_close( producer );
735 }
736 }
737 }
738 // Scale luma map
739 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
740 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height );
741
742 // Remember the scaled luma size to prevent unnecessary scaling
743 mlt_properties_set_int( properties, "_luma.width", width );
744 mlt_properties_set_int( properties, "_luma.height", height );
745 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
746 }
747 return luma_bitmap;
748 }
749
750 /** Get the properly sized image from b_frame.
751 */
752
753 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
754 {
755 int ret = 0;
756 mlt_image_format format = mlt_image_yuv422;
757
758 // Get the properties objects
759 mlt_properties b_props = mlt_frame_properties( b_frame );
760 mlt_properties properties = mlt_transition_properties( this );
761
762 if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 )
763 {
764 // Adjust b_frame pixel aspect
765 int normalised_width = geometry->w;
766 int normalised_height = geometry->h;
767 int real_width = get_value( b_props, "real_width", "width" );
768 int real_height = get_value( b_props, "real_height", "height" );
769 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
770 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
771 int scaled_width = input_ar / output_ar * real_width;
772 int scaled_height = real_height;
773
774 // Now ensure that our images fit in the normalised frame
775 if ( scaled_width > normalised_width )
776 {
777 scaled_height = scaled_height * normalised_width / scaled_width;
778 scaled_width = normalised_width;
779 }
780 if ( scaled_height > normalised_height )
781 {
782 scaled_width = scaled_width * normalised_height / scaled_height;
783 scaled_height = normalised_height;
784 }
785
786 // Now apply the fill
787 // TODO: Should combine fill/distort in one property
788 if ( mlt_properties_get( properties, "fill" ) != NULL )
789 {
790 scaled_width = ( geometry->w / scaled_width ) * scaled_width;
791 scaled_height = ( geometry->h / scaled_height ) * scaled_height;
792 }
793
794 // Save the new scaled dimensions
795 geometry->sw = scaled_width;
796 geometry->sh = scaled_height;
797 }
798 else
799 {
800 geometry->sw = geometry->w;
801 geometry->sh = geometry->h;
802 }
803
804 // We want to ensure that we bypass resize now...
805 mlt_properties_set( b_props, "distort", "true" );
806
807 // Take into consideration alignment for optimisation
808 alignment_calculate( geometry );
809
810 // Adjust to consumer scale
811 int x = geometry->x * *width / geometry->nw;
812 int y = geometry->y * *height / geometry->nh;
813 *width = geometry->sw * *width / geometry->nw;
814 *height = geometry->sh * *height / geometry->nh;
815
816 x -= x % 2;
817
818 // optimization points - no work to do
819 if ( *width < 1 || *height < 1 )
820 return 1;
821
822 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
823 return 1;
824
825 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
826
827 return ret;
828 }
829
830
831 struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position )
832 {
833 // Get the properties from the transition
834 mlt_properties properties = mlt_transition_properties( this );
835
836 // Get the properties from the frame
837 mlt_properties a_props = mlt_frame_properties( a_frame );
838
839 // Structures for geometry
840 struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
841
842 // Now parse the geometries
843 if ( start == NULL )
844 {
845 // Obtain the normalised width and height from the a_frame
846 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
847 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
848
849 // Parse the transitions properties
850 start = transition_parse_keys( this, normalised_width, normalised_height );
851 }
852
853 // Do the calculation
854 geometry_calculate( result, start, position );
855
856 // Now parse the alignment
857 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
858 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
859
860 return start;
861 }
862
863 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
864 {
865 // Create a frame to return
866 mlt_frame b_frame = mlt_frame_init( );
867
868 // Get the properties of the a frame
869 mlt_properties a_props = mlt_frame_properties( a_frame );
870
871 // Get the properties of the b frame
872 mlt_properties b_props = mlt_frame_properties( b_frame );
873
874 // Get the position
875 float position = position_calculate( this, frame_position );
876
877 // Destination image
878 uint8_t *dest = NULL;
879
880 // Get the image and dimensions
881 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
882 int width = mlt_properties_get_int( a_props, "width" );
883 int height = mlt_properties_get_int( a_props, "height" );
884
885 // Pointers for copy operation
886 uint8_t *p;
887 uint8_t *q;
888 uint8_t *r;
889
890 // Corrdinates
891 int w = 0;
892 int h = 0;
893 int x = 0;
894 int y = 0;
895
896 // Will need to know region to copy
897 struct geometry_s result;
898
899 // Calculate the region now
900 composite_calculate( &result, this, a_frame, position );
901
902 // Need to scale down to actual dimensions
903 x = result.x * width / result.nw ;
904 y = result.y * height / result.nh;
905 w = result.w * width / result.nw;
906 h = result.h * height / result.nh;
907
908 x &= 0xfffffffe;
909 //w &= 0xfffffffe;
910
911 // Now we need to create a new destination image
912 dest = mlt_pool_alloc( w * h * 2 );
913
914 // Copy the region of the image
915 p = image + y * width * 2 + x * 2;
916 q = dest;
917 r = dest + w * h * 2;
918
919 while ( q < r )
920 {
921 memcpy( q, p, w * 2 );
922 q += w * 2;
923 p += width * 2;
924 }
925
926 // Assign to the new frame
927 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
928 mlt_properties_set_int( b_props, "width", w );
929 mlt_properties_set_int( b_props, "height", h );
930
931 // Assign this position to the b frame
932 mlt_frame_set_position( b_frame, frame_position );
933
934 // Return the frame
935 return b_frame;
936 }
937
938 /** Get the image.
939 */
940
941 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
942 {
943 // Get the b frame from the stack
944 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
945
946 // Get the transition from the a frame
947 mlt_transition this = mlt_frame_pop_service( a_frame );
948
949 // This compositer is yuv422 only
950 *format = mlt_image_yuv422;
951
952 // Get the image from the a frame
953 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
954
955 if ( b_frame != NULL )
956 {
957 // Get the properties of the a frame
958 mlt_properties a_props = mlt_frame_properties( a_frame );
959
960 // Get the properties of the b frame
961 mlt_properties b_props = mlt_frame_properties( b_frame );
962
963 // Get the properties from the transition
964 mlt_properties properties = mlt_transition_properties( this );
965
966 // Structures for geometry
967 struct geometry_s result;
968
969 // Calculate the position
970 float position = mlt_properties_get_double( b_props, "relative_position" );
971 float delta = delta_calculate( this, a_frame );
972
973 // Do the calculation
974 struct geometry_s *start = composite_calculate( &result, this, a_frame, position );
975
976 // Optimisation - no compositing required
977 if ( result.mix == 0 || ( result.w == 0 && result.h == 0 ) )
978 return 0;
979
980 // Since we are the consumer of the b_frame, we must pass along these
981 // consumer properties from the a_frame
982 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
983
984 // Get the image from the b frame
985 uint8_t *image_b = NULL;
986 int width_b = *width;
987 int height_b = *height;
988
989 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
990 {
991 uint8_t *dest = *image;
992 uint8_t *src = image_b;
993 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
994 int progressive = mlt_properties_get_int( a_props, "progressive" ) ||
995 mlt_properties_get_int( a_props, "consumer_progressive" ) ||
996 mlt_properties_get_int( properties, "progressive" );
997 int field;
998
999 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1000 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1001 composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : composite_line_yuv;
1002
1003 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1004 {
1005 // Assume lower field (0) first
1006 float field_position = position + field * delta;
1007
1008 // Do the calculation if we need to
1009 geometry_calculate( &result, start, field_position );
1010
1011 // Align
1012 alignment_calculate( &result );
1013
1014 // Composite the b_frame on the a_frame
1015 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1016 }
1017 }
1018 }
1019
1020 return 0;
1021 }
1022
1023 /** Composition transition processing.
1024 */
1025
1026 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1027 {
1028 // Propogate the transition properties to the b frame
1029 mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1030 mlt_frame_push_service( a_frame, this );
1031 mlt_frame_push_frame( a_frame, b_frame );
1032 mlt_frame_push_get_image( a_frame, transition_get_image );
1033 return a_frame;
1034 }
1035
1036 /** Constructor for the filter.
1037 */
1038
1039 mlt_transition transition_composite_init( char *arg )
1040 {
1041 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1042 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1043 {
1044 mlt_properties properties = mlt_transition_properties( this );
1045
1046 this->process = composite_process;
1047
1048 // Default starting motion and zoom
1049 mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" );
1050
1051 // Default factory
1052 mlt_properties_set( properties, "factory", "fezzik" );
1053
1054 #ifdef USE_MMX
1055 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1056 #endif
1057 }
1058 return this;
1059 }