2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
30 typedef void ( *composite_line_fn
)( uint8_t *dest
, uint8_t *src
, int width_src
, uint8_t *alpha
, int weight
, uint16_t *luma
, int softness
);
32 /* mmx function declarations */
34 void composite_line_yuv_mmx( uint8_t *dest
, uint8_t *src
, int width_src
, uint8_t *alpha
, int weight
, uint16_t *luma
, int softness
);
35 int composite_have_mmx( void );
45 int nw
; // normalised width
46 int nh
; // normalised height
47 int sw
; // scaled width, not including consumer scale based upon w/nw
48 int sh
; // scaled height, not including consumer scale based upon h/nh
53 int halign
; // horizontal alignment: 0=left, 1=center, 2=right
54 int valign
; // vertical alignment: 0=top, 1=middle, 2=bottom
56 struct geometry_s
*next
;
59 /** Parse a value from a geometry string.
62 static float parse_value( char **ptr
, int normalisation
, char delim
, float defaults
)
64 float value
= defaults
;
66 if ( *ptr
!= NULL
&& **ptr
!= '\0' )
69 value
= strtod( *ptr
, &end
);
73 value
= ( value
/ 100.0 ) * normalisation
;
74 while ( *end
== delim
|| *end
== '%' )
83 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
84 expressed as a percentage by appending a % after the value, otherwise values are
85 assumed to be relative to the normalised dimensions of the consumer.
88 static void geometry_parse( struct geometry_s
*geometry
, struct geometry_s
*defaults
, char *property
, int nw
, int nh
)
90 // Assign normalised width and height
94 // Assign from defaults if available
95 if ( defaults
!= NULL
)
97 geometry
->x
= defaults
->x
;
98 geometry
->y
= defaults
->y
;
99 geometry
->w
= geometry
->sw
= defaults
->w
;
100 geometry
->h
= geometry
->sh
= defaults
->h
;
101 geometry
->distort
= defaults
->distort
;
102 geometry
->mix
= defaults
->mix
;
103 defaults
->next
= geometry
;
110 // Parse the geomtry string
111 if ( property
!= NULL
&& strcmp( property
, "" ) )
113 char *ptr
= property
;
114 geometry
->x
= parse_value( &ptr
, nw
, ',', geometry
->x
);
115 geometry
->y
= parse_value( &ptr
, nh
, ':', geometry
->y
);
116 geometry
->w
= geometry
->sw
= parse_value( &ptr
, nw
, 'x', geometry
->w
);
117 geometry
->h
= geometry
->sh
= parse_value( &ptr
, nh
, ':', geometry
->h
);
120 geometry
->distort
= 1;
125 geometry
->mix
= parse_value( &ptr
, 100, ' ', geometry
->mix
);
129 /** Calculate real geometry.
132 static void geometry_calculate( struct geometry_s
*output
, struct geometry_s
*in
, float position
)
134 // Search in for position
135 struct geometry_s
*out
= in
->next
;
137 if ( position
>= 1.0 )
139 int section
= floor( position
);
141 if ( section
% 2 == 1 )
142 position
= 1.0 - position
;
145 while ( out
->next
!= NULL
)
147 if ( position
>= in
->position
&& position
< out
->position
)
154 position
= ( position
- in
->position
) / ( out
->position
- in
->position
);
156 // Calculate this frames geometry
159 output
->x
= in
->x
+ ( out
->x
- in
->x
) * position
;
160 output
->y
= in
->y
+ ( out
->y
- in
->y
) * position
;
161 output
->w
= in
->w
+ ( out
->w
- in
->w
) * position
;
162 output
->h
= in
->h
+ ( out
->h
- in
->h
) * position
;
163 output
->mix
= in
->mix
+ ( out
->mix
- in
->mix
) * position
;
164 output
->distort
= in
->distort
;
166 // DRD> These break on negative values. I do not think they are needed
167 // since yuv_composite takes care of YUYV group alignment
168 //output->x = ( int )floor( output->x ) & 0xfffffffe;
169 //output->w = ( int )floor( output->w ) & 0xfffffffe;
170 //output->sw &= 0xfffffffe;
173 void transition_destroy_keys( void *arg
)
175 struct geometry_s
*ptr
= arg
;
176 struct geometry_s
*next
= NULL
;
178 while ( ptr
!= NULL
)
186 static struct geometry_s
*transition_parse_keys( mlt_transition
this, int normalised_width
, int normalised_height
)
188 // Loop variable for property interrogation
191 // Get the properties of the transition
192 mlt_properties properties
= mlt_transition_properties( this );
194 // Get the in and out position
195 mlt_position in
= mlt_transition_get_in( this );
196 mlt_position out
= mlt_transition_get_out( this );
199 struct geometry_s
*start
= calloc( 1, sizeof( struct geometry_s
) );
201 // Create the end (we always need two entries)
202 struct geometry_s
*end
= calloc( 1, sizeof( struct geometry_s
) );
205 struct geometry_s
*ptr
= start
;
207 // Parse the start property
208 geometry_parse( start
, NULL
, mlt_properties_get( properties
, "start" ), normalised_width
, normalised_height
);
210 // Parse the keys in between
211 for ( i
= 0; i
< mlt_properties_count( properties
); i
++ )
213 // Get the name of the property
214 char *name
= mlt_properties_get_name( properties
, i
);
216 // Check that it's valid
217 if ( !strncmp( name
, "key[", 4 ) )
219 // Get the value of the property
220 char *value
= mlt_properties_get_value( properties
, i
);
222 // Determine the frame number
223 int frame
= atoi( name
+ 4 );
225 // Determine the position
228 if ( frame
>= 0 && frame
< ( out
- in
) )
229 position
= ( float )frame
/ ( float )( out
- in
+ 1 );
230 else if ( frame
< 0 && - frame
< ( out
- in
) )
231 position
= ( float )( out
- in
+ frame
) / ( float )( out
- in
+ 1 );
233 // For now, we'll exclude all keys received out of order
234 if ( position
> ptr
->position
)
236 // Create a new geometry
237 struct geometry_s
*temp
= calloc( 1, sizeof( struct geometry_s
) );
239 // Parse and add to the list
240 geometry_parse( temp
, ptr
, value
, normalised_width
, normalised_height
);
242 // Assign the position
243 temp
->position
= position
;
245 // Allow the next to be appended after this one
250 fprintf( stderr
, "Key out of order - skipping %s\n", name
);
256 geometry_parse( end
, ptr
, mlt_properties_get( properties
, "end" ), normalised_width
, normalised_height
);
258 end
->position
= ( float )( out
- in
) / ( float )( out
- in
+ 1 );
262 // Assign to properties to ensure we get destroyed
263 mlt_properties_set_data( properties
, "geometries", start
, 0, transition_destroy_keys
, NULL
);
268 /** Parse the alignment properties into the geometry.
271 static int alignment_parse( char* align
)
275 if ( align
== NULL
);
276 else if ( isdigit( align
[ 0 ] ) )
278 else if ( align
[ 0 ] == 'c' || align
[ 0 ] == 'm' )
280 else if ( align
[ 0 ] == 'r' || align
[ 0 ] == 'b' )
286 /** Adjust position according to scaled size and alignment properties.
289 static void alignment_calculate( struct geometry_s
*geometry
)
291 geometry
->x
+= ( geometry
->w
- geometry
->sw
) * geometry
->halign
/ 2;
292 geometry
->y
+= ( geometry
->h
- geometry
->sh
) * geometry
->valign
/ 2;
295 /** Calculate the position for this frame.
298 static float position_calculate( mlt_transition
this, mlt_position position
)
300 // Get the in and out position
301 mlt_position in
= mlt_transition_get_in( this );
302 mlt_position out
= mlt_transition_get_out( this );
305 return ( float )( position
- in
) / ( float )( out
- in
+ 1 );
308 /** Calculate the field delta for this frame - position between two frames.
311 static inline float delta_calculate( mlt_transition
this, mlt_frame frame
)
313 // Get the in and out position
314 mlt_position in
= mlt_transition_get_in( this );
315 mlt_position out
= mlt_transition_get_out( this );
317 // Get the position of the frame
318 mlt_position position
= mlt_frame_get_position( frame
);
321 float x
= ( float )( position
- in
) / ( float )( out
- in
+ 1 );
322 float y
= ( float )( position
+ 1 - in
) / ( float )( out
- in
+ 1 );
324 return ( y
- x
) / 2.0;
327 static int get_value( mlt_properties properties
, char *preferred
, char *fallback
)
329 int value
= mlt_properties_get_int( properties
, preferred
);
331 value
= mlt_properties_get_int( properties
, fallback
);
335 /** A linear threshold determination function.
338 static inline int32_t linearstep( int32_t edge1
, int32_t edge2
, int32_t a
)
346 return ( ( a
- edge1
) << 16 ) / ( edge2
- edge1
);
349 /** A smoother, non-linear threshold determination function.
352 static inline int32_t smoothstep( int32_t edge1
, int32_t edge2
, uint32_t a
)
360 a
= ( ( a
- edge1
) << 16 ) / ( edge2
- edge1
);
362 return ( ( ( a
* a
) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a
) ) ) >> 16;
365 /** Load the luma map from PGM stream.
368 static void luma_read_pgm( FILE *f
, uint16_t **map
, int *width
, int *height
)
370 uint8_t *data
= NULL
;
382 // get the magic code
383 if ( fgets( line
, 127, f
) == NULL
)
387 while ( sscanf( line
, " #%s", comment
) > 0 )
388 if ( fgets( line
, 127, f
) == NULL
)
391 if ( line
[0] != 'P' || line
[1] != '5' )
394 // skip white space and see if a new line must be fetched
395 for ( i
= 2; i
< 127 && line
[i
] != '\0' && isspace( line
[i
] ); i
++ );
396 if ( ( line
[i
] == '\0' || line
[i
] == '#' ) && fgets( line
, 127, f
) == NULL
)
400 while ( sscanf( line
, " #%s", comment
) > 0 )
401 if ( fgets( line
, 127, f
) == NULL
)
404 // get the dimensions
405 if ( line
[0] == 'P' )
406 i
= sscanf( line
, "P5 %d %d %d", width
, height
, &maxval
);
408 i
= sscanf( line
, "%d %d %d", width
, height
, &maxval
);
410 // get the height value, if not yet
413 if ( fgets( line
, 127, f
) == NULL
)
417 while ( sscanf( line
, " #%s", comment
) > 0 )
418 if ( fgets( line
, 127, f
) == NULL
)
421 i
= sscanf( line
, "%d", height
);
428 // get the maximum gray value, if not yet
431 if ( fgets( line
, 127, f
) == NULL
)
435 while ( sscanf( line
, " #%s", comment
) > 0 )
436 if ( fgets( line
, 127, f
) == NULL
)
439 i
= sscanf( line
, "%d", &maxval
);
444 // determine if this is one or two bytes per pixel
445 bpp
= maxval
> 255 ?
2 : 1;
447 // allocate temporary storage for the raw data
448 data
= mlt_pool_alloc( *width
* *height
* bpp
);
453 if ( fread( data
, *width
* *height
* bpp
, 1, f
) != 1 )
456 // allocate the luma bitmap
457 *map
= p
= (uint16_t*)mlt_pool_alloc( *width
* *height
* sizeof( uint16_t ) );
461 // proces the raw data into the luma bitmap
462 for ( i
= 0; i
< *width
* *height
* bpp
; i
+= bpp
)
465 *p
++ = data
[ i
] << 8;
467 *p
++ = ( data
[ i
] << 8 ) + data
[ i
+ 1 ];
474 mlt_pool_release( data
);
477 /** Generate a luma map from any YUV image.
480 static void luma_read_yuv422( uint8_t *image
, uint16_t **map
, int width
, int height
)
484 // allocate the luma bitmap
485 uint16_t *p
= *map
= ( uint16_t* )mlt_pool_alloc( width
* height
* sizeof( uint16_t ) );
489 // proces the image data into the luma bitmap
490 for ( i
= 0; i
< width
* height
* 2; i
+= 2 )
491 *p
++ = ( image
[ i
] - 16 ) * 299; // 299 = 65535 / 219
495 /** Composite a source line over a destination line
499 void composite_line_yuv( uint8_t *dest
, uint8_t *src
, int width_src
, uint8_t *alpha
, int weight
, uint16_t *luma
, int softness
)
504 for ( j
= 0; j
< width_src
; j
++ )
506 a
= ( alpha
== NULL
) ?
255 : *alpha
++;
507 mix
= ( luma
== NULL
) ? weight
: linearstep( luma
[ j
], luma
[ j
] + softness
, weight
);
508 mix
= ( mix
* ( a
+ 1 ) ) >> 8;
509 *dest
= ( *src
++ * mix
+ *dest
* ( ( 1 << 16 ) - mix
) ) >> 16;
511 *dest
= ( *src
++ * mix
+ *dest
* ( ( 1 << 16 ) - mix
) ) >> 16;
516 /** Composite function.
519 static int composite_yuv( uint8_t *p_dest
, int width_dest
, int height_dest
, uint8_t *p_src
, int width_src
, int height_src
, uint8_t *p_alpha
, struct geometry_s geometry
, int field
, uint16_t *p_luma
, int32_t softness
, composite_line_fn line_fn
)
523 int x_src
= 0, y_src
= 0;
524 int32_t weight
= ( 1 << 16 ) * ( geometry
.mix
/ 100 );
525 int step
= ( field
> -1 ) ?
2 : 1;
527 int stride_src
= width_src
* bpp
* step
;
528 int stride_dest
= width_dest
* bpp
* step
;
529 int alpha_stride
= stride_src
/ bpp
;
531 // Adjust to consumer scale
532 int x
= geometry
.x
* width_dest
/ geometry
.nw
;
533 int y
= geometry
.y
* height_dest
/ geometry
.nh
;
535 // Align x to a full YUYV group
537 width_src
&= 0xfffffffe;
539 // optimization points - no work to do
540 if ( width_src
<= 0 || height_src
<= 0 )
543 if ( ( x
< 0 && -x
>= width_src
) || ( y
< 0 && -y
>= height_src
) )
546 // crop overlay off the left edge of frame
554 // crop overlay beyond right edge of frame
555 else if ( x
+ width_src
> width_dest
)
556 width_src
= width_dest
- x
;
558 // crop overlay off the top edge of the frame
564 // crop overlay below bottom edge of frame
565 else if ( y
+ height_src
> height_dest
)
566 height_src
= height_dest
- y
;
568 // offset pointer into overlay buffer based on cropping
569 p_src
+= x_src
* bpp
+ y_src
* stride_src
;
571 // offset pointer into frame buffer based upon positive coordinates only!
572 p_dest
+= ( x
< 0 ?
0 : x
) * bpp
+ ( y
< 0 ?
0 : y
) * stride_dest
;
574 // offset pointer into alpha channel based upon cropping
576 p_alpha
+= x_src
+ y_src
* stride_src
/ bpp
;
578 // offset pointer into luma channel based upon cropping
580 p_luma
+= x_src
+ y_src
* stride_src
/ bpp
;
582 // Assuming lower field first
583 // Special care is taken to make sure the b_frame is aligned to the correct field.
584 // field 0 = lower field and y should be odd (y is 0-based).
585 // field 1 = upper field and y should be even.
586 if ( ( field
> -1 ) && ( y
% 2 == field
) )
588 //fprintf( stderr, "field %d y %d\n", field, y );
589 if ( ( field
== 1 && y
< height_dest
- 1 ) || ( field
== 0 && y
== 0 ) )
590 p_dest
+= stride_dest
;
592 p_dest
-= stride_dest
;
595 // On the second field, use the other lines from b_frame
600 p_alpha
+= stride_src
/ bpp
;
604 if ( line_fn
== NULL
)
605 line_fn
= composite_line_yuv
;
607 // now do the compositing only to cropped extents
608 for ( i
= 0; i
< height_src
; i
+= step
)
610 line_fn( p_dest
, p_src
, width_src
, p_alpha
, weight
, p_luma
, softness
);
613 p_dest
+= stride_dest
;
615 p_alpha
+= alpha_stride
;
617 p_luma
+= alpha_stride
;
624 /** Scale 16bit greyscale luma map using nearest neighbor.
628 scale_luma ( uint16_t *dest_buf
, int dest_width
, int dest_height
, const uint16_t *src_buf
, int src_width
, int src_height
)
631 register int x_step
= ( src_width
<< 16 ) / dest_width
;
632 register int y_step
= ( src_height
<< 16 ) / dest_height
;
633 register int x
, y
= 0;
635 for ( i
= 0; i
< dest_height
; i
++ )
637 const uint16_t *src
= src_buf
+ ( y
>> 16 ) * src_width
;
640 for ( j
= 0; j
< dest_width
; j
++ )
642 *dest_buf
++ = src
[ x
>> 16 ];
649 static uint16_t* get_luma( mlt_properties properties
, int width
, int height
)
651 // The cached luma map information
652 int luma_width
= mlt_properties_get_int( properties
, "_luma.width" );
653 int luma_height
= mlt_properties_get_int( properties
, "_luma.height" );
654 uint16_t *luma_bitmap
= mlt_properties_get_data( properties
, "_luma.bitmap", NULL
);
656 // If the filename property changed, reload the map
657 char *resource
= mlt_properties_get( properties
, "luma" );
659 if ( resource
!= NULL
&& ( luma_bitmap
== NULL
|| luma_width
!= width
|| luma_height
!= height
) )
661 uint16_t *orig_bitmap
= mlt_properties_get_data( properties
, "_luma.orig_bitmap", NULL
);
662 luma_width
= mlt_properties_get_int( properties
, "_luma.orig_width" );
663 luma_height
= mlt_properties_get_int( properties
, "_luma.orig_height" );
665 // Load the original luma once
666 if ( orig_bitmap
== NULL
)
668 char *extension
= extension
= strrchr( resource
, '.' );
670 // See if it is a PGM
671 if ( extension
!= NULL
&& strcmp( extension
, ".pgm" ) == 0 )
674 FILE *f
= fopen( resource
, "r" );
678 luma_read_pgm( f
, &orig_bitmap
, &luma_width
, &luma_height
);
681 // Remember the original size for subsequent scaling
682 mlt_properties_set_data( properties
, "_luma.orig_bitmap", orig_bitmap
, luma_width
* luma_height
* 2, mlt_pool_release
, NULL
);
683 mlt_properties_set_int( properties
, "_luma.orig_width", luma_width
);
684 mlt_properties_set_int( properties
, "_luma.orig_height", luma_height
);
689 // Get the factory producer service
690 char *factory
= mlt_properties_get( properties
, "factory" );
692 // Create the producer
693 mlt_producer producer
= mlt_factory_producer( factory
, resource
);
696 if ( producer
!= NULL
)
698 // Get the producer properties
699 mlt_properties producer_properties
= mlt_producer_properties( producer
);
701 // Ensure that we loop
702 mlt_properties_set( producer_properties
, "eof", "loop" );
704 // Now pass all producer. properties on the transition down
705 mlt_properties_pass( producer_properties
, properties
, "luma." );
707 // We will get the alpha frame from the producer
708 mlt_frame luma_frame
= NULL
;
710 // Get the luma frame
711 if ( mlt_service_get_frame( mlt_producer_service( producer
), &luma_frame
, 0 ) == 0 )
714 mlt_image_format luma_format
= mlt_image_yuv422
;
716 // Get image from the luma producer
717 mlt_properties_set( mlt_frame_properties( luma_frame
), "rescale.interp", "none" );
718 mlt_frame_get_image( luma_frame
, &luma_image
, &luma_format
, &luma_width
, &luma_height
, 0 );
720 // Generate the luma map
721 if ( luma_image
!= NULL
&& luma_format
== mlt_image_yuv422
)
722 luma_read_yuv422( luma_image
, &orig_bitmap
, luma_width
, luma_height
);
724 // Remember the original size for subsequent scaling
725 mlt_properties_set_data( properties
, "_luma.orig_bitmap", orig_bitmap
, luma_width
* luma_height
* 2, mlt_pool_release
, NULL
);
726 mlt_properties_set_int( properties
, "_luma.orig_width", luma_width
);
727 mlt_properties_set_int( properties
, "_luma.orig_height", luma_height
);
729 // Cleanup the luma frame
730 mlt_frame_close( luma_frame
);
733 // Cleanup the luma producer
734 mlt_producer_close( producer
);
739 luma_bitmap
= mlt_pool_alloc( width
* height
* sizeof( uint16_t ) );
740 scale_luma( luma_bitmap
, width
, height
, orig_bitmap
, luma_width
, luma_height
);
742 // Remember the scaled luma size to prevent unnecessary scaling
743 mlt_properties_set_int( properties
, "_luma.width", width
);
744 mlt_properties_set_int( properties
, "_luma.height", height
);
745 mlt_properties_set_data( properties
, "_luma.bitmap", luma_bitmap
, width
* height
* 2, mlt_pool_release
, NULL
);
750 /** Get the properly sized image from b_frame.
753 static int get_b_frame_image( mlt_transition
this, mlt_frame b_frame
, uint8_t **image
, int *width
, int *height
, struct geometry_s
*geometry
)
756 mlt_image_format format
= mlt_image_yuv422
;
758 // Get the properties objects
759 mlt_properties b_props
= mlt_frame_properties( b_frame
);
760 mlt_properties properties
= mlt_transition_properties( this );
762 if ( mlt_properties_get( properties
, "distort" ) == NULL
&& geometry
->distort
== 0 )
764 // Adjust b_frame pixel aspect
765 int normalised_width
= geometry
->w
;
766 int normalised_height
= geometry
->h
;
767 int real_width
= get_value( b_props
, "real_width", "width" );
768 int real_height
= get_value( b_props
, "real_height", "height" );
769 double input_ar
= mlt_frame_get_aspect_ratio( b_frame
);
770 double output_ar
= mlt_properties_get_double( b_props
, "consumer_aspect_ratio" );
771 int scaled_width
= input_ar
/ output_ar
* real_width
;
772 int scaled_height
= real_height
;
774 // Now ensure that our images fit in the normalised frame
775 if ( scaled_width
> normalised_width
)
777 scaled_height
= scaled_height
* normalised_width
/ scaled_width
;
778 scaled_width
= normalised_width
;
780 if ( scaled_height
> normalised_height
)
782 scaled_width
= scaled_width
* normalised_height
/ scaled_height
;
783 scaled_height
= normalised_height
;
786 // Now apply the fill
787 // TODO: Should combine fill/distort in one property
788 if ( mlt_properties_get( properties
, "fill" ) != NULL
)
790 scaled_width
= ( geometry
->w
/ scaled_width
) * scaled_width
;
791 scaled_height
= ( geometry
->h
/ scaled_height
) * scaled_height
;
794 // Save the new scaled dimensions
795 geometry
->sw
= scaled_width
;
796 geometry
->sh
= scaled_height
;
800 geometry
->sw
= geometry
->w
;
801 geometry
->sh
= geometry
->h
;
804 // We want to ensure that we bypass resize now...
805 mlt_properties_set( b_props
, "distort", "true" );
807 // Take into consideration alignment for optimisation
808 alignment_calculate( geometry
);
810 // Adjust to consumer scale
811 int x
= geometry
->x
* *width
/ geometry
->nw
;
812 int y
= geometry
->y
* *height
/ geometry
->nh
;
813 *width
= geometry
->sw
* *width
/ geometry
->nw
;
814 *height
= geometry
->sh
* *height
/ geometry
->nh
;
818 // optimization points - no work to do
819 if ( *width
< 1 || *height
< 1 )
822 if ( ( x
< 0 && -x
>= *width
) || ( y
< 0 && -y
>= *height
) )
825 ret
= mlt_frame_get_image( b_frame
, image
, &format
, width
, height
, 1 );
831 struct geometry_s
*composite_calculate( struct geometry_s
*result
, mlt_transition
this, mlt_frame a_frame
, float position
)
833 // Get the properties from the transition
834 mlt_properties properties
= mlt_transition_properties( this );
836 // Get the properties from the frame
837 mlt_properties a_props
= mlt_frame_properties( a_frame
);
839 // Structures for geometry
840 struct geometry_s
*start
= mlt_properties_get_data( properties
, "geometries", NULL
);
842 // Now parse the geometries
845 // Obtain the normalised width and height from the a_frame
846 int normalised_width
= mlt_properties_get_int( a_props
, "normalised_width" );
847 int normalised_height
= mlt_properties_get_int( a_props
, "normalised_height" );
849 // Parse the transitions properties
850 start
= transition_parse_keys( this, normalised_width
, normalised_height
);
853 // Do the calculation
854 geometry_calculate( result
, start
, position
);
856 // Now parse the alignment
857 result
->halign
= alignment_parse( mlt_properties_get( properties
, "halign" ) );
858 result
->valign
= alignment_parse( mlt_properties_get( properties
, "valign" ) );
863 mlt_frame
composite_copy_region( mlt_transition
this, mlt_frame a_frame
, mlt_position frame_position
)
865 // Create a frame to return
866 mlt_frame b_frame
= mlt_frame_init( );
868 // Get the properties of the a frame
869 mlt_properties a_props
= mlt_frame_properties( a_frame
);
871 // Get the properties of the b frame
872 mlt_properties b_props
= mlt_frame_properties( b_frame
);
875 float position
= position_calculate( this, frame_position
);
878 uint8_t *dest
= NULL
;
880 // Get the image and dimensions
881 uint8_t *image
= mlt_properties_get_data( a_props
, "image", NULL
);
882 int width
= mlt_properties_get_int( a_props
, "width" );
883 int height
= mlt_properties_get_int( a_props
, "height" );
885 // Pointers for copy operation
896 // Will need to know region to copy
897 struct geometry_s result
;
899 // Calculate the region now
900 composite_calculate( &result
, this, a_frame
, position
);
902 // Need to scale down to actual dimensions
903 x
= result
.x
* width
/ result
.nw
;
904 y
= result
.y
* height
/ result
.nh
;
905 w
= result
.w
* width
/ result
.nw
;
906 h
= result
.h
* height
/ result
.nh
;
911 // Now we need to create a new destination image
912 dest
= mlt_pool_alloc( w
* h
* 2 );
914 // Copy the region of the image
915 p
= image
+ y
* width
* 2 + x
* 2;
917 r
= dest
+ w
* h
* 2;
921 memcpy( q
, p
, w
* 2 );
926 // Assign to the new frame
927 mlt_properties_set_data( b_props
, "image", dest
, w
* h
* 2, mlt_pool_release
, NULL
);
928 mlt_properties_set_int( b_props
, "width", w
);
929 mlt_properties_set_int( b_props
, "height", h
);
931 // Assign this position to the b frame
932 mlt_frame_set_position( b_frame
, frame_position
);
941 static int transition_get_image( mlt_frame a_frame
, uint8_t **image
, mlt_image_format
*format
, int *width
, int *height
, int writable
)
943 // Get the b frame from the stack
944 mlt_frame b_frame
= mlt_frame_pop_frame( a_frame
);
946 // Get the transition from the a frame
947 mlt_transition
this = mlt_frame_pop_service( a_frame
);
949 // This compositer is yuv422 only
950 *format
= mlt_image_yuv422
;
952 // Get the image from the a frame
953 mlt_frame_get_image( a_frame
, image
, format
, width
, height
, 1 );
955 if ( b_frame
!= NULL
)
957 // Get the properties of the a frame
958 mlt_properties a_props
= mlt_frame_properties( a_frame
);
960 // Get the properties of the b frame
961 mlt_properties b_props
= mlt_frame_properties( b_frame
);
963 // Get the properties from the transition
964 mlt_properties properties
= mlt_transition_properties( this );
966 // Structures for geometry
967 struct geometry_s result
;
969 // Calculate the position
970 float position
= mlt_properties_get_double( b_props
, "relative_position" );
971 float delta
= delta_calculate( this, a_frame
);
973 // Do the calculation
974 struct geometry_s
*start
= composite_calculate( &result
, this, a_frame
, position
);
976 // Optimisation - no compositing required
977 if ( result
.mix
== 0 || ( result
.w
== 0 && result
.h
== 0 ) )
980 // Since we are the consumer of the b_frame, we must pass along these
981 // consumer properties from the a_frame
982 mlt_properties_set_double( b_props
, "consumer_aspect_ratio", mlt_properties_get_double( a_props
, "consumer_aspect_ratio" ) );
984 // Get the image from the b frame
985 uint8_t *image_b
= NULL
;
986 int width_b
= *width
;
987 int height_b
= *height
;
989 if ( get_b_frame_image( this, b_frame
, &image_b
, &width_b
, &height_b
, &result
) == 0 )
991 uint8_t *dest
= *image
;
992 uint8_t *src
= image_b
;
993 uint8_t *alpha
= mlt_frame_get_alpha_mask( b_frame
);
994 int progressive
= mlt_properties_get_int( a_props
, "progressive" ) ||
995 mlt_properties_get_int( a_props
, "consumer_progressive" ) ||
996 mlt_properties_get_int( properties
, "progressive" );
999 int32_t luma_softness
= mlt_properties_get_double( properties
, "softness" ) * ( 1 << 16 );
1000 uint16_t *luma_bitmap
= get_luma( properties
, width_b
, height_b
);
1001 composite_line_fn line_fn
= mlt_properties_get_int( properties
, "_MMX" ) ? composite_line_yuv_mmx
: composite_line_yuv
;
1003 for ( field
= 0; field
< ( progressive ?
1 : 2 ); field
++ )
1005 // Assume lower field (0) first
1006 float field_position
= position
+ field
* delta
;
1008 // Do the calculation if we need to
1009 geometry_calculate( &result
, start
, field_position
);
1012 alignment_calculate( &result
);
1014 // Composite the b_frame on the a_frame
1015 composite_yuv( dest
, *width
, *height
, src
, width_b
, height_b
, alpha
, result
, progressive ?
-1 : field
, luma_bitmap
, luma_softness
, line_fn
);
1023 /** Composition transition processing.
1026 static mlt_frame
composite_process( mlt_transition
this, mlt_frame a_frame
, mlt_frame b_frame
)
1028 // Propogate the transition properties to the b frame
1029 mlt_properties_set_double( mlt_frame_properties( b_frame
), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame
) ) );
1030 mlt_frame_push_service( a_frame
, this );
1031 mlt_frame_push_frame( a_frame
, b_frame
);
1032 mlt_frame_push_get_image( a_frame
, transition_get_image
);
1036 /** Constructor for the filter.
1039 mlt_transition
transition_composite_init( char *arg
)
1041 mlt_transition
this = calloc( sizeof( struct mlt_transition_s
), 1 );
1042 if ( this != NULL
&& mlt_transition_init( this, NULL
) == 0 )
1044 mlt_properties properties
= mlt_transition_properties( this );
1046 this->process
= composite_process
;
1048 // Default starting motion and zoom
1049 mlt_properties_set( properties
, "start", arg
!= NULL ? arg
: "85%,5%:10%x10%" );
1052 mlt_properties_set( properties
, "factory", "fezzik" );
1055 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );