3ea3ec0316eb4603e4268205ab9a5c2311934872
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt_frame.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 /** Geometry struct.
31 */
32
33 struct geometry_s
34 {
35 float position;
36 float mix;
37 int nw; // normalised width
38 int nh; // normalised height
39 int sw; // scaled width, not including consumer scale based upon w/nw
40 int sh; // scaled height, not including consumer scale based upon h/nh
41 float x;
42 float y;
43 float w;
44 float h;
45 int halign; // horizontal alignment: 0=left, 1=center, 2=right
46 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
47 int distort;
48 struct geometry_s *next;
49 };
50
51 /** Parse a value from a geometry string.
52 */
53
54 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
55 {
56 float value = defaults;
57
58 if ( *ptr != NULL && **ptr != '\0' )
59 {
60 char *end = NULL;
61 value = strtod( *ptr, &end );
62 if ( end != NULL )
63 {
64 if ( *end == '%' )
65 value = ( value / 100.0 ) * normalisation;
66 while ( *end == delim || *end == '%' )
67 end ++;
68 }
69 *ptr = end;
70 }
71
72 return value;
73 }
74
75 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
76 expressed as a percentage by appending a % after the value, otherwise values are
77 assumed to be relative to the normalised dimensions of the consumer.
78 */
79
80 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
81 {
82 // Assign normalised width and height
83 geometry->nw = nw;
84 geometry->nh = nh;
85
86 // Assign from defaults if available
87 if ( defaults != NULL )
88 {
89 geometry->x = defaults->x;
90 geometry->y = defaults->y;
91 geometry->w = geometry->sw = defaults->w;
92 geometry->h = geometry->sh = defaults->h;
93 geometry->distort = defaults->distort;
94 geometry->mix = defaults->mix;
95 defaults->next = geometry;
96 }
97 else
98 {
99 geometry->mix = 100;
100 }
101
102 // Parse the geomtry string
103 if ( property != NULL && strcmp( property, "" ) )
104 {
105 char *ptr = property;
106 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
107 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
108 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
109 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
110 if ( *ptr == '!' )
111 {
112 geometry->distort = 1;
113 ptr ++;
114 if ( *ptr == ':' )
115 ptr ++;
116 }
117 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
118 }
119 }
120
121 /** Calculate real geometry.
122 */
123
124 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
125 {
126 // Search in for position
127 struct geometry_s *out = in->next;
128
129 if ( position >= 1.0 )
130 {
131 int section = floor( position );
132 position -= section;
133 if ( section % 2 == 1 )
134 position = 1.0 - position;
135 }
136
137 while ( out->next != NULL )
138 {
139 if ( position >= in->position && position < out->position )
140 break;
141
142 in = out;
143 out = in->next;
144 }
145
146 position = ( position - in->position ) / ( out->position - in->position );
147
148 // Calculate this frames geometry
149 output->nw = in->nw;
150 output->nh = in->nh;
151 output->x = in->x + ( out->x - in->x ) * position + 0.5;
152 output->y = in->y + ( out->y - in->y ) * position + 0.5;
153 output->w = in->w + ( out->w - in->w ) * position;
154 output->h = in->h + ( out->h - in->h ) * position;
155 output->mix = in->mix + ( out->mix - in->mix ) * position;
156 output->sw = output->w;
157 output->sh = output->h;
158 output->distort = in->distort;
159 }
160
161 void transition_destroy_keys( void *arg )
162 {
163 struct geometry_s *ptr = arg;
164 struct geometry_s *next = NULL;
165
166 while ( ptr != NULL )
167 {
168 next = ptr->next;
169 free( ptr );
170 ptr = next;
171 }
172 }
173
174 static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
175 {
176 // Loop variable for property interrogation
177 int i = 0;
178
179 // Get the properties of the transition
180 mlt_properties properties = mlt_transition_properties( this );
181
182 // Get the in and out position
183 mlt_position in = mlt_transition_get_in( this );
184 mlt_position out = mlt_transition_get_out( this );
185
186 // Create the start
187 struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
188
189 // Create the end (we always need two entries)
190 struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
191
192 // Pointer
193 struct geometry_s *ptr = start;
194
195 // Parse the start property
196 geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
197
198 // Parse the keys in between
199 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
200 {
201 // Get the name of the property
202 char *name = mlt_properties_get_name( properties, i );
203
204 // Check that it's valid
205 if ( !strncmp( name, "key[", 4 ) )
206 {
207 // Get the value of the property
208 char *value = mlt_properties_get_value( properties, i );
209
210 // Determine the frame number
211 int frame = atoi( name + 4 );
212
213 // Determine the position
214 float position = 0;
215
216 if ( frame >= 0 && frame < ( out - in ) )
217 position = ( float )frame / ( float )( out - in + 1 );
218 else if ( frame < 0 && - frame < ( out - in ) )
219 position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
220
221 // For now, we'll exclude all keys received out of order
222 if ( position > ptr->position )
223 {
224 // Create a new geometry
225 struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
226
227 // Parse and add to the list
228 geometry_parse( temp, ptr, value, normalised_width, normalised_height );
229
230 // Assign the position
231 temp->position = position;
232
233 // Allow the next to be appended after this one
234 ptr = temp;
235 }
236 else
237 {
238 fprintf( stderr, "Key out of order - skipping %s\n", name );
239 }
240 }
241 }
242
243 // Parse the end
244 geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
245 if ( out > 0 )
246 end->position = ( float )( out - in ) / ( float )( out - in + 1 );
247 else
248 end->position = 1;
249
250 // Assign to properties to ensure we get destroyed
251 mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
252
253 return start;
254 }
255
256 /** Parse the alignment properties into the geometry.
257 */
258
259 static int alignment_parse( char* align )
260 {
261 int ret = 0;
262
263 if ( align == NULL );
264 else if ( isdigit( align[ 0 ] ) )
265 ret = atoi( align );
266 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
267 ret = 1;
268 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
269 ret = 2;
270
271 return ret;
272 }
273
274 /** Adjust position according to scaled size and alignment properties.
275 */
276
277 static void alignment_calculate( struct geometry_s *geometry )
278 {
279 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5;
280 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5;
281 }
282
283 /** Calculate the position for this frame.
284 */
285
286 static inline float position_calculate( mlt_transition this, mlt_frame frame )
287 {
288 // Get the in and out position
289 mlt_position in = mlt_transition_get_in( this );
290 mlt_position out = mlt_transition_get_out( this );
291
292 // Get the position
293 mlt_position position = mlt_frame_get_position( frame );
294
295 // Now do the calcs
296 return ( float )( position - in ) / ( float )( out - in + 1 );
297 }
298
299 /** Calculate the field delta for this frame - position between two frames.
300 */
301
302 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
303 {
304 // Get the in and out position
305 mlt_position in = mlt_transition_get_in( this );
306 mlt_position out = mlt_transition_get_out( this );
307
308 // Get the position of the frame
309 mlt_position position = mlt_frame_get_position( frame );
310
311 // Now do the calcs
312 float x = ( float )( position - in ) / ( float )( out - in + 1 );
313 float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
314
315 return ( y - x ) / 2.0;
316 }
317
318 static int get_value( mlt_properties properties, char *preferred, char *fallback )
319 {
320 int value = mlt_properties_get_int( properties, preferred );
321 if ( value == 0 )
322 value = mlt_properties_get_int( properties, fallback );
323 return value;
324 }
325
326 /** Composite function.
327 */
328
329 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field )
330 {
331 int ret = 0;
332 int i, j;
333 int x_src = 0, y_src = 0;
334 int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
335 int stride_src = width_src * bpp;
336 int stride_dest = width_dest * bpp;
337
338 // Adjust to consumer scale
339 int x = geometry.x * width_dest / geometry.nw + 0.5;
340 int y = geometry.y * height_dest / geometry.nh + 0.5;
341
342 if ( bpp == 2 )
343 x -= x % 2;
344
345 // optimization points - no work to do
346 if ( width_src <= 0 || height_src <= 0 )
347 return ret;
348
349 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
350 return ret;
351
352 // crop overlay off the left edge of frame
353 if ( x < 0 )
354 {
355 x_src = -x;
356 width_src -= x_src;
357 x = 0;
358 }
359
360 // crop overlay beyond right edge of frame
361 else if ( x + width_src > width_dest )
362 width_src = width_dest - x;
363
364 // crop overlay off the top edge of the frame
365 if ( y < 0 )
366 {
367 y_src = -y;
368 height_src -= y_src;
369 }
370 // crop overlay below bottom edge of frame
371 else if ( y + height_src > height_dest )
372 height_src = height_dest - y;
373
374 // offset pointer into overlay buffer based on cropping
375 p_src += x_src * bpp + y_src * stride_src;
376
377 // offset pointer into frame buffer based upon positive coordinates only!
378 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
379
380 // offset pointer into alpha channel based upon cropping
381 if ( p_alpha )
382 p_alpha += x_src + y_src * stride_src / bpp;
383
384 // Assuming lower field first
385 // Special care is taken to make sure the b_frame is aligned to the correct field.
386 // field 0 = lower field and y should be odd (y is 0-based).
387 // field 1 = upper field and y should be even.
388 if ( ( field > -1 ) && ( y % 2 == field ) )
389 {
390 //fprintf( stderr, "field %d y %d\n", field, y );
391 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
392 p_dest += stride_dest;
393 else
394 p_dest -= stride_dest;
395 }
396
397 // On the second field, use the other lines from b_frame
398 if ( field == 1 )
399 {
400 p_src += stride_src;
401 if ( p_alpha )
402 p_alpha += stride_src / bpp;
403 height_src--;
404 }
405
406 uint8_t *p = p_src;
407 uint8_t *q = p_dest;
408 uint8_t *o = p_dest;
409 uint8_t *z = p_alpha;
410
411 uint8_t a;
412 int32_t value;
413 int step = ( field > -1 ) ? 2 : 1;
414
415 stride_src = stride_src * step;
416 int alpha_stride = stride_src / bpp;
417 stride_dest = stride_dest * step;
418
419 // now do the compositing only to cropped extents
420 for ( i = 0; i < height_src; i += step )
421 {
422 p = p_src;
423 q = p_dest;
424 o = q;
425 z = p_alpha;
426
427 for ( j = 0; j < width_src; j ++ )
428 {
429 a = ( z == NULL ) ? 255 : *z ++;
430 value = ( weight * ( a + 1 ) ) >> 8;
431 *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16;
432 *o ++ = ( *p++ * value + *q++ * ( ( 1 << 16 ) - value ) ) >> 16;
433 }
434
435 p_src += stride_src;
436 p_dest += stride_dest;
437 if ( p_alpha )
438 p_alpha += alpha_stride;
439 }
440
441 return ret;
442 }
443
444
445 /** Get the properly sized image from b_frame.
446 */
447
448 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
449 {
450 int ret = 0;
451 mlt_image_format format = mlt_image_yuv422;
452
453 // Get the properties objects
454 mlt_properties b_props = mlt_frame_properties( b_frame );
455 mlt_properties properties = mlt_transition_properties( this );
456
457 if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 )
458 {
459 // Adjust b_frame pixel aspect
460 int normalised_width = geometry->w;
461 int normalised_height = geometry->h;
462 int real_width = get_value( b_props, "real_width", "width" );
463 int real_height = get_value( b_props, "real_height", "height" );
464 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
465 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
466 int scaled_width = real_width;
467 int scaled_height = real_height;
468 double output_sar = ( double ) geometry->nw / geometry->nh / output_ar;
469
470 // If the output is fat pixels (NTSC) then stretch our input horizontally
471 // derived from: output_sar / input_sar * real_width
472 scaled_width = output_sar * real_height * input_ar;
473
474 // Now ensure that our images fit in the normalised frame
475 if ( scaled_width > normalised_width )
476 {
477 scaled_height = scaled_height * normalised_width / scaled_width;
478 scaled_width = normalised_width;
479 }
480 if ( scaled_height > normalised_height )
481 {
482 scaled_width = scaled_width * normalised_height / scaled_height;
483 scaled_height = normalised_height;
484 }
485
486 // Now apply the fill
487 // TODO: Should combine fill/distort in one property
488 if ( mlt_properties_get( properties, "fill" ) != NULL )
489 {
490 scaled_width = ( geometry->w / scaled_width ) * scaled_width;
491 scaled_height = ( geometry->h / scaled_height ) * scaled_height;
492 }
493
494 // Save the new scaled dimensions
495 geometry->sw = scaled_width;
496 geometry->sh = scaled_height;
497 }
498
499 // We want to ensure that we bypass resize now...
500 mlt_properties_set( b_props, "distort", "true" );
501
502 // Take into consideration alignment for optimisation
503 alignment_calculate( geometry );
504
505 // Adjust to consumer scale
506 int x = geometry->x * *width / geometry->nw + 0.5;
507 int y = geometry->y * *height / geometry->nh + 0.5;
508 *width = geometry->sw * *width / geometry->nw;
509 *height = geometry->sh * *height / geometry->nh;
510
511 x -= x % 2;
512
513 // optimization points - no work to do
514 if ( *width <= 0 || *height <= 0 )
515 return 1;
516
517 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
518 return 1;
519
520 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
521
522 return ret;
523 }
524
525
526 static uint8_t *transition_get_alpha_mask( mlt_frame this )
527 {
528 // Obtain properties of frame
529 mlt_properties properties = mlt_frame_properties( this );
530
531 // Return the alpha mask
532 return mlt_properties_get_data( properties, "alpha", NULL );
533 }
534
535 /** Get the image.
536 */
537
538 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
539 {
540 // Get the b frame from the stack
541 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
542
543 // This compositer is yuv422 only
544 *format = mlt_image_yuv422;
545
546 // Get the transition from the a frame
547 mlt_transition this = mlt_frame_pop_service( a_frame );
548
549 // Get the image from the a frame
550 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
551
552 if ( b_frame != NULL )
553 {
554 // Get the properties of the a frame
555 mlt_properties a_props = mlt_frame_properties( a_frame );
556
557 // Get the properties of the b frame
558 mlt_properties b_props = mlt_frame_properties( b_frame );
559
560 // Get the properties from the transition
561 mlt_properties properties = mlt_transition_properties( this );
562
563 // Structures for geometry
564 struct geometry_s result;
565 struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
566
567 // Calculate the position
568 float position = mlt_properties_get_double( b_props, "relative_position" );
569 float delta = delta_calculate( this, a_frame );
570
571 // Now parse the geometries
572 if ( start == NULL )
573 {
574 // Obtain the normalised width and height from the a_frame
575 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
576 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
577
578 // Parse the transitions properties
579 start = transition_parse_keys( this, normalised_width, normalised_height );
580 }
581
582 // Since we are the consumer of the b_frame, we must pass along these
583 // consumer properties from the a_frame
584 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
585 mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) );
586
587 // Do the calculation
588 geometry_calculate( &result, start, position );
589
590 // Now parse the alignment
591 result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
592 result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
593
594 // Get the image from the b frame
595 uint8_t *image_b = NULL;
596 int width_b = *width;
597 int height_b = *height;
598
599 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
600 {
601 uint8_t *dest = *image;
602 uint8_t *src = image_b;
603 int bpp = 2;
604 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
605 int progressive = mlt_properties_get_int( a_props, "progressive" ) ||
606 mlt_properties_get_int( a_props, "consumer_progressive" ) ||
607 mlt_properties_get_int( properties, "progressive" );
608 int field;
609
610 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
611 {
612 // Assume lower field (0) first
613 float field_position = position + field * delta;
614
615 // Do the calculation if we need to
616 geometry_calculate( &result, start, field_position );
617
618 // Align
619 alignment_calculate( &result );
620
621 // Composite the b_frame on the a_frame
622 composite_yuv( dest, *width, *height, bpp, src, width_b, height_b, alpha, result, progressive ? -1 : field );
623 }
624 }
625 }
626
627 return 0;
628 }
629
630 /** Composition transition processing.
631 */
632
633 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
634 {
635 // Propogate the transition properties to the b frame
636 mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, a_frame ) );
637 mlt_frame_push_service( a_frame, this );
638 mlt_frame_push_get_image( a_frame, transition_get_image );
639 mlt_frame_push_frame( a_frame, b_frame );
640 return a_frame;
641 }
642
643 /** Constructor for the filter.
644 */
645
646 mlt_transition transition_composite_init( char *arg )
647 {
648 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
649 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
650 {
651 this->process = composite_process;
652 mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" );
653 }
654 return this;
655 }
656