3725c4a62c548f0c32dd745e4ae9ab3426674a5d
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37 struct mlt_geometry_item_s item;
38 int nw; // normalised width
39 int nh; // normalised height
40 int sw; // scaled width, not including consumer scale based upon w/nw
41 int sh; // scaled height, not including consumer scale based upon h/nh
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44 int x_src;
45 int y_src;
46 };
47
48 /** Parse the alignment properties into the geometry.
49 */
50
51 static int alignment_parse( char* align )
52 {
53 int ret = 0;
54
55 if ( align == NULL );
56 else if ( isdigit( align[ 0 ] ) )
57 ret = atoi( align );
58 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
59 ret = 1;
60 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
61 ret = 2;
62
63 return ret;
64 }
65
66 /** Calculate real geometry.
67 */
68
69 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
70 {
71 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
72 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
73 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
74 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
75 int length = mlt_geometry_get_length( geometry );
76
77 // Allow wrapping
78 if ( !repeat_off && position >= length && length != 0 )
79 {
80 int section = position / length;
81 position -= section * length;
82 if ( !mirror_off && section % 2 == 1 )
83 position = length - position;
84 }
85
86 // Fetch the key for the position
87 mlt_geometry_fetch( geometry, &output->item, position );
88 }
89
90 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
91 {
92 // Loop variable for property interrogation
93 int i = 0;
94
95 // Get the properties of the transition
96 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
97
98 // Create an empty geometries object
99 mlt_geometry geometry = mlt_geometry_init( );
100
101 // Get the in and out position
102 mlt_position in = mlt_transition_get_in( this );
103 mlt_position out = mlt_transition_get_out( this );
104 int length = out - in + 1;
105 double cycle = mlt_properties_get_double( properties, "cycle" );
106
107 // Get the new style geometry string
108 char *property = mlt_properties_get( properties, "geometry" );
109
110 // Allow a geometry repeat cycle
111 if ( cycle >= 1 )
112 length = cycle;
113 else if ( cycle > 0 )
114 length *= cycle;
115
116 // Parse the geometry if we have one
117 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
118
119 // Check if we're using the old style geometry
120 if ( property == NULL )
121 {
122 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
123 // practical use - while deprecated, it has been slightly extended too - keys can now
124 // be specified out of order, and can be blanked or NULL to simulate removal
125
126 // Structure to use for parsing and inserting
127 struct mlt_geometry_item_s item;
128
129 // Parse the start property
130 item.frame = 0;
131 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
132 mlt_geometry_insert( geometry, &item );
133
134 // Parse the keys in between
135 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
136 {
137 // Get the name of the property
138 char *name = mlt_properties_get_name( properties, i );
139
140 // Check that it's valid
141 if ( !strncmp( name, "key[", 4 ) )
142 {
143 // Get the value of the property
144 char *value = mlt_properties_get_value( properties, i );
145
146 // Determine the frame number
147 item.frame = atoi( name + 4 );
148
149 // Parse and add to the list
150 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
151 mlt_geometry_insert( geometry, &item );
152 else
153 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
154 }
155 }
156
157 // Parse the end
158 item.frame = -1;
159 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
160 mlt_geometry_insert( geometry, &item );
161 }
162
163 return geometry;
164 }
165
166 /** Adjust position according to scaled size and alignment properties.
167 */
168
169 static void alignment_calculate( struct geometry_s *geometry )
170 {
171 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
172 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
173 }
174
175 /** Calculate the position for this frame.
176 */
177
178 static int position_calculate( mlt_transition this, mlt_position position )
179 {
180 // Get the in and out position
181 mlt_position in = mlt_transition_get_in( this );
182
183 // Now do the calcs
184 return position - in;
185 }
186
187 /** Calculate the field delta for this frame - position between two frames.
188 */
189
190 static inline double delta_calculate( mlt_transition this, mlt_frame frame, mlt_position position )
191 {
192 // Get the in and out position
193 mlt_position in = mlt_transition_get_in( this );
194 mlt_position out = mlt_transition_get_out( this );
195 double length = out - in + 1;
196
197 // Now do the calcs
198 double x = ( double )( position - in ) / length;
199 double y = ( double )( position + 1 - in ) / length;
200
201 return length * ( y - x ) / 2.0;
202 }
203
204 static int get_value( mlt_properties properties, char *preferred, char *fallback )
205 {
206 int value = mlt_properties_get_int( properties, preferred );
207 if ( value == 0 )
208 value = mlt_properties_get_int( properties, fallback );
209 return value;
210 }
211
212 /** A linear threshold determination function.
213 */
214
215 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
216 {
217 if ( a < edge1 )
218 return 0;
219
220 if ( a >= edge2 )
221 return 0x10000;
222
223 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
224 }
225
226 /** A smoother, non-linear threshold determination function.
227 */
228
229 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
230 {
231 if ( a < edge1 )
232 return 0;
233
234 if ( a >= edge2 )
235 return 0x10000;
236
237 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
238
239 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
240 }
241
242 /** Load the luma map from PGM stream.
243 */
244
245 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
246 {
247 uint8_t *data = NULL;
248 while (1)
249 {
250 char line[128];
251 char comment[128];
252 int i = 2;
253 int maxval;
254 int bpp;
255 uint16_t *p;
256
257 line[127] = '\0';
258
259 // get the magic code
260 if ( fgets( line, 127, f ) == NULL )
261 break;
262
263 // skip comments
264 while ( sscanf( line, " #%s", comment ) > 0 )
265 if ( fgets( line, 127, f ) == NULL )
266 break;
267
268 if ( line[0] != 'P' || line[1] != '5' )
269 break;
270
271 // skip white space and see if a new line must be fetched
272 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
273 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
274 break;
275
276 // skip comments
277 while ( sscanf( line, " #%s", comment ) > 0 )
278 if ( fgets( line, 127, f ) == NULL )
279 break;
280
281 // get the dimensions
282 if ( line[0] == 'P' )
283 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
284 else
285 i = sscanf( line, "%d %d %d", width, height, &maxval );
286
287 // get the height value, if not yet
288 if ( i < 2 )
289 {
290 if ( fgets( line, 127, f ) == NULL )
291 break;
292
293 // skip comments
294 while ( sscanf( line, " #%s", comment ) > 0 )
295 if ( fgets( line, 127, f ) == NULL )
296 break;
297
298 i = sscanf( line, "%d", height );
299 if ( i == 0 )
300 break;
301 else
302 i = 2;
303 }
304
305 // get the maximum gray value, if not yet
306 if ( i < 3 )
307 {
308 if ( fgets( line, 127, f ) == NULL )
309 break;
310
311 // skip comments
312 while ( sscanf( line, " #%s", comment ) > 0 )
313 if ( fgets( line, 127, f ) == NULL )
314 break;
315
316 i = sscanf( line, "%d", &maxval );
317 if ( i == 0 )
318 break;
319 }
320
321 // determine if this is one or two bytes per pixel
322 bpp = maxval > 255 ? 2 : 1;
323
324 // allocate temporary storage for the raw data
325 data = mlt_pool_alloc( *width * *height * bpp );
326 if ( data == NULL )
327 break;
328
329 // read the raw data
330 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
331 break;
332
333 // allocate the luma bitmap
334 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
335 if ( *map == NULL )
336 break;
337
338 // proces the raw data into the luma bitmap
339 for ( i = 0; i < *width * *height * bpp; i += bpp )
340 {
341 if ( bpp == 1 )
342 *p++ = data[ i ] << 8;
343 else
344 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
345 }
346
347 break;
348 }
349
350 if ( data != NULL )
351 mlt_pool_release( data );
352 }
353
354 /** Generate a luma map from any YUV image.
355 */
356
357 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
358 {
359 int i;
360
361 // allocate the luma bitmap
362 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
363 if ( *map == NULL )
364 return;
365
366 // proces the image data into the luma bitmap
367 for ( i = 0; i < width * height * 2; i += 2 )
368 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
369 }
370
371 static inline int calculate_mix( uint16_t *luma, int j, int soft, int weight, int alpha )
372 {
373 return ( ( ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + soft, weight + soft ) ) * alpha ) >> 8;
374 }
375
376 static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
377 {
378 return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
379 }
380
381 /** Composite a source line over a destination line
382 */
383
384 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
385 {
386 register int j;
387 register int mix;
388
389 for ( j = 0; j < width; j ++ )
390 {
391 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ );
392 *dest = sample_mix( *dest, *src++, mix );
393 dest++;
394 *dest = sample_mix( *dest, *src++, mix );
395 dest++;
396 *alpha_a = ( mix >> 8 ) | *alpha_a;
397 alpha_a ++;
398 }
399 }
400
401 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
402 {
403 register int j;
404 register int mix;
405
406 for ( j = 0; j < width; j ++ )
407 {
408 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a );
409 *dest = sample_mix( *dest, *src++, mix );
410 dest++;
411 *dest = sample_mix( *dest, *src++, mix );
412 dest++;
413 *alpha_a ++ = mix >> 8;
414 }
415 }
416
417 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
418 {
419 register int j;
420 register int mix;
421
422 for ( j = 0; j < width; j ++ )
423 {
424 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a );
425 *dest = sample_mix( *dest, *src++, mix );
426 dest++;
427 *dest = sample_mix( *dest, *src++, mix );
428 dest++;
429 *alpha_a ++ = mix >> 8;
430 }
431 }
432
433 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
434 {
435 register int j;
436 register int mix;
437
438 for ( j = 0; j < width; j ++ )
439 {
440 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a );
441 *dest = sample_mix( *dest, *src++, mix );
442 dest++;
443 *dest = sample_mix( *dest, *src++, mix );
444 dest++;
445 *alpha_a ++ = mix >> 8;
446 }
447 }
448
449 /** Composite function.
450 */
451
452 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
453 {
454 int ret = 0;
455 int i;
456 int x_src = -geometry.x_src, y_src = -geometry.y_src;
457 int uneven_x_src = ( x_src % 2 );
458 int32_t weight = ( ( 1 << 16 ) - 1 ) * ( geometry.item.mix / 100 );
459 int step = ( field > -1 ) ? 2 : 1;
460 int bpp = 2;
461 int stride_src = geometry.sw * bpp;
462 int stride_dest = width_dest * bpp;
463
464 // Adjust to consumer scale
465 int x = rint( geometry.item.x * width_dest / geometry.nw );
466 int y = rint( geometry.item.y * height_dest / geometry.nh );
467 int uneven_x = ( x % 2 );
468
469 // optimization points - no work to do
470 if ( width_src <= 0 || height_src <= 0 || y_src >= height_src || x_src >= width_src )
471 return ret;
472
473 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
474 return ret;
475
476 // cropping affects the source width
477 if ( x_src > 0 )
478 {
479 width_src -= x_src;
480 // and it implies cropping
481 if ( width_src > geometry.item.w )
482 width_src = geometry.item.w;
483 }
484
485 // cropping affects the source height
486 if ( y_src > 0 )
487 {
488 height_src -= y_src;
489 // and it implies cropping
490 if ( height_src > geometry.item.h )
491 height_src = geometry.item.h;
492 }
493
494 // crop overlay off the left edge of frame
495 if ( x < 0 )
496 {
497 x_src = -x;
498 width_src -= x_src;
499 x = 0;
500 }
501
502 // crop overlay beyond right edge of frame
503 if ( x + width_src > width_dest )
504 width_src = width_dest - x;
505
506 // crop overlay off the top edge of the frame
507 if ( y < 0 )
508 {
509 y_src = -y;
510 height_src -= y_src;
511 y = 0;
512 }
513
514 // crop overlay below bottom edge of frame
515 if ( y + height_src > height_dest )
516 height_src = height_dest - y;
517
518 // offset pointer into overlay buffer based on cropping
519 p_src += x_src * bpp + y_src * stride_src;
520
521 // offset pointer into frame buffer based upon positive coordinates only!
522 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
523
524 // offset pointer into alpha channel based upon cropping
525 alpha_b += x_src + y_src * stride_src / bpp;
526 alpha_a += x + y * stride_dest / bpp;
527
528 // offset pointer into luma channel based upon cropping
529 if ( p_luma )
530 p_luma += x_src + y_src * stride_src / bpp;
531
532 // Assuming lower field first
533 // Special care is taken to make sure the b_frame is aligned to the correct field.
534 // field 0 = lower field and y should be odd (y is 0-based).
535 // field 1 = upper field and y should be even.
536 if ( ( field > -1 ) && ( y % 2 == field ) )
537 {
538 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
539 p_dest += stride_dest;
540 else
541 p_dest -= stride_dest;
542 }
543
544 // On the second field, use the other lines from b_frame
545 if ( field == 1 )
546 {
547 p_src += stride_src;
548 alpha_b += stride_src / bpp;
549 alpha_a += stride_dest / bpp;
550 height_src--;
551 }
552
553 stride_src *= step;
554 stride_dest *= step;
555 int alpha_b_stride = stride_src / bpp;
556 int alpha_a_stride = stride_dest / bpp;
557
558 // Align chroma of source and destination
559 if ( uneven_x != uneven_x_src )
560 {
561 p_src += 2;
562 width_src -= 2;
563 alpha_b += 1;
564 }
565
566 // now do the compositing only to cropped extents
567 for ( i = 0; i < height_src; i += step )
568 {
569 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, softness );
570
571 p_src += stride_src;
572 p_dest += stride_dest;
573 alpha_b += alpha_b_stride;
574 alpha_a += alpha_a_stride;
575 if ( p_luma )
576 p_luma += alpha_b_stride;
577 }
578
579 return ret;
580 }
581
582
583 /** Scale 16bit greyscale luma map using nearest neighbor.
584 */
585
586 static inline void
587 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
588 {
589 register int i, j;
590 register int x_step = ( src_width << 16 ) / dest_width;
591 register int y_step = ( src_height << 16 ) / dest_height;
592 register int x, y = 0;
593
594 for ( i = 0; i < dest_height; i++ )
595 {
596 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
597 x = 0;
598
599 for ( j = 0; j < dest_width; j++ )
600 {
601 *dest_buf++ = src[ x >> 16 ] ^ invert;
602 x += x_step;
603 }
604 y += y_step;
605 }
606 }
607
608 static uint16_t* get_luma( mlt_transition this, mlt_properties properties, int width, int height )
609 {
610 // The cached luma map information
611 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
612 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
613 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
614 int invert = mlt_properties_get_int( properties, "luma_invert" );
615
616 // If the filename property changed, reload the map
617 char *resource = mlt_properties_get( properties, "luma" );
618
619 char temp[ 512 ];
620
621 if ( luma_width == 0 || luma_height == 0 )
622 {
623 luma_width = width;
624 luma_height = height;
625 }
626
627 if ( resource && resource[0] && strchr( resource, '%' ) )
628 {
629 // TODO: Clean up quick and dirty compressed/existence check
630 FILE *test;
631 sprintf( temp, "%s/lumas/%s/%s", mlt_environment( "MLT_DATA" ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
632 test = fopen( temp, "r" );
633 if ( test == NULL )
634 strcat( temp, ".png" );
635 else
636 fclose( test );
637 resource = temp;
638 }
639
640 if ( resource && resource[0] )
641 {
642 char *old_luma = mlt_properties_get( properties, "_luma" );
643 int old_invert = mlt_properties_get_int( properties, "_luma_invert" );
644
645 if ( invert != old_invert || ( old_luma && old_luma[0] && strcmp( resource, old_luma ) ) )
646 {
647 mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
648 luma_bitmap = NULL;
649 }
650 }
651
652 if ( resource && resource[0] && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
653 {
654 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
655 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
656 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
657
658 // Load the original luma once
659 if ( orig_bitmap == NULL )
660 {
661 char *extension = strrchr( resource, '.' );
662
663 // See if it is a PGM
664 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
665 {
666 // Open PGM
667 FILE *f = fopen( resource, "r" );
668 if ( f != NULL )
669 {
670 // Load from PGM
671 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
672 fclose( f );
673
674 // Remember the original size for subsequent scaling
675 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
676 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
677 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
678 }
679 }
680 else
681 {
682 // Get the factory producer service
683 char *factory = mlt_properties_get( properties, "factory" );
684
685 // Create the producer
686 mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( this ) );
687 mlt_producer producer = mlt_factory_producer( profile, factory, resource );
688
689 // If we have one
690 if ( producer != NULL )
691 {
692 // Get the producer properties
693 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
694
695 // Ensure that we loop
696 mlt_properties_set( producer_properties, "eof", "loop" );
697
698 // Now pass all producer. properties on the transition down
699 mlt_properties_pass( producer_properties, properties, "luma." );
700
701 // We will get the alpha frame from the producer
702 mlt_frame luma_frame = NULL;
703
704 // Get the luma frame
705 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
706 {
707 uint8_t *luma_image;
708 mlt_image_format luma_format = mlt_image_yuv422;
709
710 // Get image from the luma producer
711 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
712 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
713
714 // Generate the luma map
715 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
716 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
717
718 // Remember the original size for subsequent scaling
719 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
720 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
721 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
722
723 // Cleanup the luma frame
724 mlt_frame_close( luma_frame );
725 }
726
727 // Cleanup the luma producer
728 mlt_producer_close( producer );
729 }
730 }
731 }
732 // Scale luma map
733 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
734 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
735
736 // Remember the scaled luma size to prevent unnecessary scaling
737 mlt_properties_set_int( properties, "_luma.width", width );
738 mlt_properties_set_int( properties, "_luma.height", height );
739 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
740 mlt_properties_set( properties, "_luma", resource );
741 mlt_properties_set_int( properties, "_luma_invert", invert );
742 }
743 return luma_bitmap;
744 }
745
746 /** Get the properly sized image from b_frame.
747 */
748
749 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
750 {
751 int ret = 0;
752 mlt_image_format format = mlt_image_yuv422;
753
754 // Get the properties objects
755 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
756 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
757 uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
758
759 // Do not scale if we are cropping - the compositing rectangle can crop the b image
760 // TODO: Use the animatable w and h of the crop geometry to scale independently of crop rectangle
761 if ( mlt_properties_get( properties, "crop" ) )
762 {
763 int real_width = get_value( b_props, "real_width", "width" );
764 int real_height = get_value( b_props, "real_height", "height" );
765 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
766 double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
767 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
768 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
769 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
770 int scaled_height = real_height;
771 geometry->sw = scaled_width;
772 geometry->sh = scaled_height;
773 }
774 // Normalise aspect ratios and scale preserving aspect ratio
775 else if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
776 {
777 // Adjust b_frame pixel aspect
778 int normalised_width = geometry->item.w;
779 int normalised_height = geometry->item.h;
780 int real_width = get_value( b_props, "real_width", "width" );
781 int real_height = get_value( b_props, "real_height", "height" );
782 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
783 double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
784 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
785 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
786 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
787 int scaled_height = real_height;
788 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d real %dx%d output_ar %f => %f\n", __FILE__,
789 // scaled_width, scaled_height, normalised_width, normalised_height, real_width, real_height,
790 // background_ar, output_ar);
791
792 // Now ensure that our images fit in the normalised frame
793 if ( scaled_width > normalised_width )
794 {
795 scaled_height = rint( scaled_height * normalised_width / scaled_width );
796 scaled_width = normalised_width;
797 }
798 if ( scaled_height > normalised_height )
799 {
800 scaled_width = rint( scaled_width * normalised_height / scaled_height );
801 scaled_height = normalised_height;
802 }
803
804 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
805 // ????: Shouln't this be the default behaviour?
806 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
807 {
808 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
809 {
810 scaled_width = rint( scaled_width * normalised_height / scaled_height );
811 scaled_height = normalised_height;
812 }
813 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
814 {
815 scaled_height = rint( scaled_height * normalised_width / scaled_width );
816 scaled_width = normalised_width;
817 }
818 }
819
820 // Save the new scaled dimensions
821 geometry->sw = scaled_width;
822 geometry->sh = scaled_height;
823 }
824 else
825 {
826 geometry->sw = geometry->item.w;
827 geometry->sh = geometry->item.h;
828 }
829
830 // We want to ensure that we bypass resize now...
831 if ( resize_alpha == 0 )
832 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
833
834 // If we're not aligned, we want a non-transparent background
835 if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
836 mlt_properties_set_int( b_props, "resize_alpha", 255 );
837
838 // Take into consideration alignment for optimisation (titles are a special case)
839 if ( !mlt_properties_get_int( properties, "titles" ) &&
840 mlt_properties_get( properties, "crop" ) == NULL )
841 alignment_calculate( geometry );
842
843 // Adjust to consumer scale
844 *width = rint( geometry->sw * *width / geometry->nw );
845 *height = rint( geometry->sh * *height / geometry->nh );
846 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d resize %dx%d\n", __FILE__,
847 // geometry->sw, geometry->sh, geometry->nw, geometry->nh, *width, *height);
848
849 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
850
851 // Set the frame back
852 mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
853
854 return ret && image != NULL;
855 }
856
857 static void crop_calculate( mlt_transition this, mlt_properties properties, struct geometry_s *result, double position )
858 {
859 // Initialize panning info
860 result->x_src = 0;
861 result->y_src = 0;
862 if ( mlt_properties_get( properties, "crop" ) )
863 {
864 mlt_geometry crop = mlt_properties_get_data( properties, "crop_geometry", NULL );
865 if ( !crop )
866 {
867 crop = mlt_geometry_init();
868 mlt_position in = mlt_transition_get_in( this );
869 mlt_position out = mlt_transition_get_out( this );
870 int length = out - in + 1;
871 double cycle = mlt_properties_get_double( properties, "cycle" );
872
873 // Allow a geometry repeat cycle
874 if ( cycle >= 1 )
875 length = cycle;
876 else if ( cycle > 0 )
877 length *= cycle;
878 mlt_geometry_parse( crop, mlt_properties_get( properties, "crop" ), length, result->sw, result->sh );
879 mlt_properties_set_data( properties, "crop_geometry", crop, 0, (mlt_destructor)mlt_geometry_close, NULL );
880 }
881
882 // Repeat processing
883 int length = mlt_geometry_get_length( crop );
884 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
885 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
886 if ( !repeat_off && position >= length && length != 0 )
887 {
888 int section = position / length;
889 position -= section * length;
890 if ( !mirror_off && section % 2 == 1 )
891 position = length - position;
892 }
893
894 // Compute the pan
895 struct mlt_geometry_item_s crop_item;
896 mlt_geometry_fetch( crop, &crop_item, position );
897 result->x_src = rint( crop_item.x );
898 result->y_src = rint( crop_item.y );
899 }
900 }
901
902 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
903 {
904 // Get the properties from the transition
905 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
906
907 // Get the properties from the frame
908 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
909
910 // Structures for geometry
911 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
912
913 // Obtain the normalised width and height from the a_frame
914 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
915 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
916
917 char *name = mlt_properties_get( properties, "_unique_id" );
918 char key[ 256 ];
919
920 sprintf( key, "%s.in", name );
921 if ( mlt_properties_get( a_props, key ) )
922 {
923 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
924 }
925 else
926 {
927 // Now parse the geometries
928 if ( start == NULL )
929 {
930 // Parse the transitions properties
931 start = transition_parse_keys( this, normalised_width, normalised_height );
932
933 // Assign to properties to ensure we get destroyed
934 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
935 }
936 else
937 {
938 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
939 double cycle = mlt_properties_get_double( properties, "cycle" );
940 if ( cycle > 1 )
941 length = cycle;
942 else if ( cycle > 0 )
943 length *= cycle;
944 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
945 }
946
947 // Do the calculation
948 geometry_calculate( this, result, position );
949
950 // Assign normalised info
951 result->nw = normalised_width;
952 result->nh = normalised_height;
953 }
954
955 // Now parse the alignment
956 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
957 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
958
959 crop_calculate( this, properties, result, position );
960
961 return start;
962 }
963
964 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
965 {
966 // Create a frame to return
967 mlt_frame b_frame = mlt_frame_init( MLT_TRANSITION_SERVICE( this ) );
968
969 // Get the properties of the a frame
970 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
971
972 // Get the properties of the b frame
973 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
974
975 // Get the position
976 int position = position_calculate( this, frame_position );
977
978 // Get the unique id of the transition
979 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
980 char key[ 256 ];
981
982 // Destination image
983 uint8_t *dest = NULL;
984
985 // Get the image and dimensions
986 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
987 int width = mlt_properties_get_int( a_props, "width" );
988 int height = mlt_properties_get_int( a_props, "height" );
989 int format = mlt_properties_get_int( a_props, "format" );
990
991 // Pointers for copy operation
992 uint8_t *p;
993
994 // Coordinates
995 int w = 0;
996 int h = 0;
997 int x = 0;
998 int y = 0;
999
1000 int ss = 0;
1001 int ds = 0;
1002
1003 // Will need to know region to copy
1004 struct geometry_s result;
1005
1006 // Calculate the region now
1007 composite_calculate( this, &result, a_frame, position );
1008
1009 // Need to scale down to actual dimensions
1010 x = rint( result.item.x * width / result.nw );
1011 y = rint( result.item.y * height / result.nh );
1012 w = rint( result.item.w * width / result.nw );
1013 h = rint( result.item.h * height / result.nh );
1014
1015 if ( x % 2 )
1016 {
1017 x --;
1018 w ++;
1019 }
1020
1021 // Store the key
1022 sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1023 mlt_properties_parse( a_props, key );
1024 sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1025 mlt_properties_parse( a_props, key );
1026
1027 ds = w * 2;
1028 ss = width * 2;
1029
1030 // Now we need to create a new destination image
1031 dest = mlt_pool_alloc( w * h * 2 );
1032
1033 // Assign to the new frame
1034 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
1035 mlt_properties_set_int( b_props, "width", w );
1036 mlt_properties_set_int( b_props, "height", h );
1037 mlt_properties_set_int( b_props, "format", format );
1038
1039 if ( y < 0 )
1040 {
1041 dest += ( ds * -y );
1042 h += y;
1043 y = 0;
1044 }
1045
1046 if ( y + h > height )
1047 h -= ( y + h - height );
1048
1049 if ( x < 0 )
1050 {
1051 dest += -x * 2;
1052 w += x;
1053 x = 0;
1054 }
1055
1056 if ( w > 0 && h > 0 )
1057 {
1058 // Copy the region of the image
1059 p = image + y * ss + x * 2;
1060
1061 while ( h -- )
1062 {
1063 memcpy( dest, p, w * 2 );
1064 dest += ds;
1065 p += ss;
1066 }
1067 }
1068
1069 // Assign this position to the b frame
1070 mlt_frame_set_position( b_frame, frame_position );
1071 mlt_properties_set_int( b_props, "distort", 1 );
1072
1073 // Return the frame
1074 return b_frame;
1075 }
1076
1077 /** Get the image.
1078 */
1079
1080 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1081 {
1082 // Get the b frame from the stack
1083 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1084
1085 // Get the transition from the a frame
1086 mlt_transition this = mlt_frame_pop_service( a_frame );
1087
1088 // Get in and out
1089 double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
1090 int out = mlt_frame_pop_service_int( a_frame );
1091 int in = mlt_frame_pop_service_int( a_frame );
1092
1093 // Get the properties from the transition
1094 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1095
1096 // TODO: clean up always_active behaviour
1097 if ( mlt_properties_get_int( properties, "always_active" ) )
1098 {
1099 mlt_events_block( properties, properties );
1100 mlt_properties_set_int( properties, "in", in );
1101 mlt_properties_set_int( properties, "out", out );
1102 mlt_events_unblock( properties, properties );
1103 }
1104
1105 // This compositer is yuv422 only
1106 *format = mlt_image_yuv422;
1107
1108 if ( b_frame != NULL )
1109 {
1110 // Get the properties of the a frame
1111 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1112
1113 // Get the properties of the b frame
1114 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1115
1116 // Structures for geometry
1117 struct geometry_s result;
1118
1119 // Calculate the position
1120 double delta = delta_calculate( this, a_frame, position );
1121
1122 // Get the image from the b frame
1123 uint8_t *image_b = NULL;
1124 int width_b = *width;
1125 int height_b = *height;
1126
1127 // Vars for alphas
1128 uint8_t *alpha_a = NULL;
1129 uint8_t *alpha_b = NULL;
1130
1131 // Composites always need scaling... defaulting to lowest
1132 char *rescale = mlt_properties_get( a_props, "rescale.interp" );
1133 if ( rescale == NULL || !strcmp( rescale, "none" ) )
1134 rescale = "nearest";
1135 mlt_properties_set( a_props, "rescale.interp", rescale );
1136 mlt_properties_set( b_props, "rescale.interp", rescale );
1137
1138 // Do the calculation
1139 // NB: Locks needed here since the properties are being modified
1140 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1141 composite_calculate( this, &result, a_frame, position );
1142 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1143
1144 // Since we are the consumer of the b_frame, we must pass along these
1145 // consumer properties from the a_frame
1146 mlt_properties_set_int( b_props, "consumer_deinterlace", mlt_properties_get_int( a_props, "consumer_deinterlace" ) || mlt_properties_get_int( properties, "deinterlace" ) );
1147 mlt_properties_set( b_props, "consumer_deinterlace_method", mlt_properties_get( a_props, "consumer_deinterlace_method" ) );
1148 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1149
1150 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1151 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
1152 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1153 {
1154 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1155 if ( !mlt_frame_is_test_card( a_frame ) )
1156 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1157 return 0;
1158 }
1159
1160 if ( a_frame == b_frame )
1161 {
1162 double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1163 get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1164 alpha_b = mlt_frame_get_alpha_mask( b_frame );
1165 mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1166 }
1167
1168 // Get the image from the a frame
1169 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1170 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1171
1172 // Optimisation - no compositing required
1173 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1174 return 0;
1175
1176 // Need to keep the width/height of the a_frame on the b_frame for titling
1177 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1178 {
1179 mlt_properties_set_int( a_props, "dest_width", *width );
1180 mlt_properties_set_int( a_props, "dest_height", *height );
1181 mlt_properties_set_int( b_props, "dest_width", *width );
1182 mlt_properties_set_int( b_props, "dest_height", *height );
1183 }
1184 else
1185 {
1186 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1187 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1188 }
1189
1190 // Special case for titling...
1191 if ( mlt_properties_get_int( properties, "titles" ) )
1192 {
1193 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1194 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1195 width_b = mlt_properties_get_int( a_props, "dest_width" );
1196 height_b = mlt_properties_get_int( a_props, "dest_height" );
1197 }
1198
1199 if ( *image != image_b && ( image_b != NULL || get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) )
1200 {
1201 uint8_t *dest = *image;
1202 uint8_t *src = image_b;
1203 int progressive =
1204 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1205 mlt_properties_get_int( properties, "progressive" );
1206 int field;
1207
1208 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1209 uint16_t *luma_bitmap = get_luma( this, properties, width_b, height_b );
1210 char *operator = mlt_properties_get( properties, "operator" );
1211
1212 alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1213
1214 composite_line_fn line_fn = composite_line_yuv;
1215
1216 // Replacement and override
1217 if ( operator != NULL )
1218 {
1219 if ( !strcmp( operator, "or" ) )
1220 line_fn = composite_line_yuv_or;
1221 if ( !strcmp( operator, "and" ) )
1222 line_fn = composite_line_yuv_and;
1223 if ( !strcmp( operator, "xor" ) )
1224 line_fn = composite_line_yuv_xor;
1225 }
1226
1227 // Allow the user to completely obliterate the alpha channels from both frames
1228 if ( mlt_properties_get( properties, "alpha_a" ) )
1229 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1230
1231 if ( mlt_properties_get( properties, "alpha_b" ) )
1232 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1233
1234 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1235 {
1236 // Assume lower field (0) first
1237 double field_position = position + field * delta;
1238
1239 // Do the calculation if we need to
1240 // NB: Locks needed here since the properties are being modified
1241 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1242 composite_calculate( this, &result, a_frame, field_position );
1243 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1244
1245 if ( mlt_properties_get_int( properties, "titles" ) )
1246 {
1247 result.item.w = rint( *width * ( result.item.w / result.nw ) );
1248 result.nw = result.item.w;
1249 result.item.h = rint( *height * ( result.item.h / result.nh ) );
1250 result.nh = *height;
1251 result.sw = width_b;
1252 result.sh = height_b;
1253 }
1254
1255 // Enforce cropping
1256 if ( mlt_properties_get( properties, "crop" ) )
1257 {
1258 if ( result.x_src == 0 )
1259 width_b = width_b > result.item.w ? result.item.w : width_b;
1260 if ( result.y_src == 0 )
1261 height_b = height_b > result.item.h ? result.item.h : height_b;
1262 }
1263 else
1264 {
1265 // Otherwise, align
1266 alignment_calculate( &result );
1267 }
1268
1269 // Composite the b_frame on the a_frame
1270 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1271 }
1272 }
1273 }
1274 else
1275 {
1276 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1277 }
1278
1279 return 0;
1280 }
1281
1282 /** Composition transition processing.
1283 */
1284
1285 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1286 {
1287 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1288 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1289 {
1290 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1291 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1292 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1293 }
1294 else
1295 {
1296 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1297 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1298 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1299 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1300 }
1301
1302 mlt_frame_push_service( a_frame, this );
1303 mlt_frame_push_frame( a_frame, b_frame );
1304 mlt_frame_push_get_image( a_frame, transition_get_image );
1305 return a_frame;
1306 }
1307
1308 /** Constructor for the filter.
1309 */
1310
1311 mlt_transition transition_composite_init( mlt_profile profile, mlt_service_type type, const char *id, char *arg )
1312 {
1313 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1314 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1315 {
1316 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1317
1318 this->process = composite_process;
1319
1320 // Default starting motion and zoom
1321 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1322
1323 // Default factory
1324 mlt_properties_set( properties, "factory", "fezzik" );
1325
1326 // Use alignment (and hence alpha of b frame)
1327 mlt_properties_set_int( properties, "aligned", 1 );
1328
1329 // Inform apps and framework that this is a video only transition
1330 mlt_properties_set_int( properties, "_transition_type", 1 );
1331 }
1332 return this;
1333 }