1af94dff5aa6629c5fef0337233a99c2bef1d448
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
31
32 /* mmx function declarations */
33 #ifdef USE_MMX
34 void composite_line_yuv_mmx( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness );
35 int composite_have_mmx( void );
36 #endif
37
38 /** Geometry struct.
39 */
40
41 struct geometry_s
42 {
43 float position;
44 float mix;
45 int nw; // normalised width
46 int nh; // normalised height
47 int sw; // scaled width, not including consumer scale based upon w/nw
48 int sh; // scaled height, not including consumer scale based upon h/nh
49 float x;
50 float y;
51 float w;
52 float h;
53 int halign; // horizontal alignment: 0=left, 1=center, 2=right
54 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
55 int distort;
56 struct geometry_s *next;
57 };
58
59 /** Parse a value from a geometry string.
60 */
61
62 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
63 {
64 float value = defaults;
65
66 if ( *ptr != NULL && **ptr != '\0' )
67 {
68 char *end = NULL;
69 value = strtod( *ptr, &end );
70 if ( end != NULL )
71 {
72 if ( *end == '%' )
73 value = ( value / 100.0 ) * normalisation;
74 while ( *end == delim || *end == '%' )
75 end ++;
76 }
77 *ptr = end;
78 }
79
80 return value;
81 }
82
83 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
84 expressed as a percentage by appending a % after the value, otherwise values are
85 assumed to be relative to the normalised dimensions of the consumer.
86 */
87
88 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
89 {
90 // Assign normalised width and height
91 geometry->nw = nw;
92 geometry->nh = nh;
93
94 // Assign from defaults if available
95 if ( defaults != NULL )
96 {
97 geometry->x = defaults->x;
98 geometry->y = defaults->y;
99 geometry->w = geometry->sw = defaults->w;
100 geometry->h = geometry->sh = defaults->h;
101 geometry->distort = defaults->distort;
102 geometry->mix = defaults->mix;
103 defaults->next = geometry;
104 }
105 else
106 {
107 geometry->mix = 100;
108 }
109
110 // Parse the geomtry string
111 if ( property != NULL && strcmp( property, "" ) )
112 {
113 char *ptr = property;
114 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
115 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
116 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
117 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
118 if ( *ptr == '!' )
119 {
120 geometry->distort = 1;
121 ptr ++;
122 if ( *ptr == ':' )
123 ptr ++;
124 }
125 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
126 }
127 }
128
129 /** Calculate real geometry.
130 */
131
132 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, float position )
133 {
134 // Search in for position
135 struct geometry_s *out = in->next;
136
137 if ( position >= 1.0 )
138 {
139 int section = floor( position );
140 position -= section;
141 if ( section % 2 == 1 )
142 position = 1.0 - position;
143 }
144
145 while ( out->next != NULL )
146 {
147 if ( position >= in->position && position < out->position )
148 break;
149
150 in = out;
151 out = in->next;
152 }
153
154 position = ( position - in->position ) / ( out->position - in->position );
155
156 // Calculate this frames geometry
157 output->nw = in->nw;
158 output->nh = in->nh;
159 output->x = in->x + ( out->x - in->x ) * position;
160 output->y = in->y + ( out->y - in->y ) * position;
161 output->w = in->w + ( out->w - in->w ) * position;
162 output->h = in->h + ( out->h - in->h ) * position;
163 output->mix = in->mix + ( out->mix - in->mix ) * position;
164 output->distort = in->distort;
165
166 // DRD> These break on negative values. I do not think they are needed
167 // since yuv_composite takes care of YUYV group alignment
168 //output->x = ( int )floor( output->x ) & 0xfffffffe;
169 //output->w = ( int )floor( output->w ) & 0xfffffffe;
170 //output->sw &= 0xfffffffe;
171 }
172
173 void transition_destroy_keys( void *arg )
174 {
175 struct geometry_s *ptr = arg;
176 struct geometry_s *next = NULL;
177
178 while ( ptr != NULL )
179 {
180 next = ptr->next;
181 free( ptr );
182 ptr = next;
183 }
184 }
185
186 static struct geometry_s *transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
187 {
188 // Loop variable for property interrogation
189 int i = 0;
190
191 // Get the properties of the transition
192 mlt_properties properties = mlt_transition_properties( this );
193
194 // Get the in and out position
195 mlt_position in = mlt_transition_get_in( this );
196 mlt_position out = mlt_transition_get_out( this );
197
198 // Create the start
199 struct geometry_s *start = calloc( 1, sizeof( struct geometry_s ) );
200
201 // Create the end (we always need two entries)
202 struct geometry_s *end = calloc( 1, sizeof( struct geometry_s ) );
203
204 // Pointer
205 struct geometry_s *ptr = start;
206
207 // Parse the start property
208 geometry_parse( start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
209
210 // Parse the keys in between
211 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
212 {
213 // Get the name of the property
214 char *name = mlt_properties_get_name( properties, i );
215
216 // Check that it's valid
217 if ( !strncmp( name, "key[", 4 ) )
218 {
219 // Get the value of the property
220 char *value = mlt_properties_get_value( properties, i );
221
222 // Determine the frame number
223 int frame = atoi( name + 4 );
224
225 // Determine the position
226 float position = 0;
227
228 if ( frame >= 0 && frame < ( out - in ) )
229 position = ( float )frame / ( float )( out - in + 1 );
230 else if ( frame < 0 && - frame < ( out - in ) )
231 position = ( float )( out - in + frame ) / ( float )( out - in + 1 );
232
233 // For now, we'll exclude all keys received out of order
234 if ( position > ptr->position )
235 {
236 // Create a new geometry
237 struct geometry_s *temp = calloc( 1, sizeof( struct geometry_s ) );
238
239 // Parse and add to the list
240 geometry_parse( temp, ptr, value, normalised_width, normalised_height );
241
242 // Assign the position
243 temp->position = position;
244
245 // Allow the next to be appended after this one
246 ptr = temp;
247 }
248 else
249 {
250 fprintf( stderr, "Key out of order - skipping %s\n", name );
251 }
252 }
253 }
254
255 // Parse the end
256 geometry_parse( end, ptr, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
257 if ( out > 0 )
258 end->position = ( float )( out - in ) / ( float )( out - in + 1 );
259 else
260 end->position = 1;
261
262 // Assign to properties to ensure we get destroyed
263 mlt_properties_set_data( properties, "geometries", start, 0, transition_destroy_keys, NULL );
264
265 return start;
266 }
267
268 /** Parse the alignment properties into the geometry.
269 */
270
271 static int alignment_parse( char* align )
272 {
273 int ret = 0;
274
275 if ( align == NULL );
276 else if ( isdigit( align[ 0 ] ) )
277 ret = atoi( align );
278 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
279 ret = 1;
280 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
281 ret = 2;
282
283 return ret;
284 }
285
286 /** Adjust position according to scaled size and alignment properties.
287 */
288
289 static void alignment_calculate( struct geometry_s *geometry )
290 {
291 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2;
292 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2;
293 }
294
295 /** Calculate the position for this frame.
296 */
297
298 static float position_calculate( mlt_transition this, mlt_position position )
299 {
300 // Get the in and out position
301 mlt_position in = mlt_transition_get_in( this );
302 mlt_position out = mlt_transition_get_out( this );
303
304 // Now do the calcs
305 return ( float )( position - in ) / ( float )( out - in + 1 );
306 }
307
308 /** Calculate the field delta for this frame - position between two frames.
309 */
310
311 static inline float delta_calculate( mlt_transition this, mlt_frame frame )
312 {
313 // Get the in and out position
314 mlt_position in = mlt_transition_get_in( this );
315 mlt_position out = mlt_transition_get_out( this );
316
317 // Get the position of the frame
318 char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" );
319 mlt_position position = mlt_properties_get_position( mlt_frame_properties( frame ), name );
320
321 // Now do the calcs
322 float x = ( float )( position - in ) / ( float )( out - in + 1 );
323 float y = ( float )( position + 1 - in ) / ( float )( out - in + 1 );
324
325 return ( y - x ) / 2.0;
326 }
327
328 static int get_value( mlt_properties properties, char *preferred, char *fallback )
329 {
330 int value = mlt_properties_get_int( properties, preferred );
331 if ( value == 0 )
332 value = mlt_properties_get_int( properties, fallback );
333 return value;
334 }
335
336 /** A linear threshold determination function.
337 */
338
339 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
340 {
341 if ( a < edge1 )
342 return 0;
343
344 if ( a >= edge2 )
345 return 0x10000;
346
347 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
348 }
349
350 /** A smoother, non-linear threshold determination function.
351 */
352
353 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
354 {
355 if ( a < edge1 )
356 return 0;
357
358 if ( a >= edge2 )
359 return 0x10000;
360
361 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
362
363 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
364 }
365
366 /** Load the luma map from PGM stream.
367 */
368
369 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
370 {
371 uint8_t *data = NULL;
372 while (1)
373 {
374 char line[128];
375 char comment[128];
376 int i = 2;
377 int maxval;
378 int bpp;
379 uint16_t *p;
380
381 line[127] = '\0';
382
383 // get the magic code
384 if ( fgets( line, 127, f ) == NULL )
385 break;
386
387 // skip comments
388 while ( sscanf( line, " #%s", comment ) > 0 )
389 if ( fgets( line, 127, f ) == NULL )
390 break;
391
392 if ( line[0] != 'P' || line[1] != '5' )
393 break;
394
395 // skip white space and see if a new line must be fetched
396 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
397 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
398 break;
399
400 // skip comments
401 while ( sscanf( line, " #%s", comment ) > 0 )
402 if ( fgets( line, 127, f ) == NULL )
403 break;
404
405 // get the dimensions
406 if ( line[0] == 'P' )
407 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
408 else
409 i = sscanf( line, "%d %d %d", width, height, &maxval );
410
411 // get the height value, if not yet
412 if ( i < 2 )
413 {
414 if ( fgets( line, 127, f ) == NULL )
415 break;
416
417 // skip comments
418 while ( sscanf( line, " #%s", comment ) > 0 )
419 if ( fgets( line, 127, f ) == NULL )
420 break;
421
422 i = sscanf( line, "%d", height );
423 if ( i == 0 )
424 break;
425 else
426 i = 2;
427 }
428
429 // get the maximum gray value, if not yet
430 if ( i < 3 )
431 {
432 if ( fgets( line, 127, f ) == NULL )
433 break;
434
435 // skip comments
436 while ( sscanf( line, " #%s", comment ) > 0 )
437 if ( fgets( line, 127, f ) == NULL )
438 break;
439
440 i = sscanf( line, "%d", &maxval );
441 if ( i == 0 )
442 break;
443 }
444
445 // determine if this is one or two bytes per pixel
446 bpp = maxval > 255 ? 2 : 1;
447
448 // allocate temporary storage for the raw data
449 data = mlt_pool_alloc( *width * *height * bpp );
450 if ( data == NULL )
451 break;
452
453 // read the raw data
454 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
455 break;
456
457 // allocate the luma bitmap
458 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
459 if ( *map == NULL )
460 break;
461
462 // proces the raw data into the luma bitmap
463 for ( i = 0; i < *width * *height * bpp; i += bpp )
464 {
465 if ( bpp == 1 )
466 *p++ = data[ i ] << 8;
467 else
468 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
469 }
470
471 break;
472 }
473
474 if ( data != NULL )
475 mlt_pool_release( data );
476 }
477
478 /** Generate a luma map from any YUV image.
479 */
480
481 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
482 {
483 int i;
484
485 // allocate the luma bitmap
486 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
487 if ( *map == NULL )
488 return;
489
490 // proces the image data into the luma bitmap
491 for ( i = 0; i < width * height * 2; i += 2 )
492 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
493 }
494
495
496 /** Composite a source line over a destination line
497 */
498
499 static inline
500 void composite_line_yuv( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha, int weight, uint16_t *luma, int softness )
501 {
502 register int j;
503 int a, mix;
504
505 for ( j = 0; j < width_src; j ++ )
506 {
507 a = ( alpha == NULL ) ? 255 : *alpha ++;
508 mix = ( luma == NULL ) ? weight : linearstep( luma[ j ], luma[ j ] + softness, weight );
509 mix = ( mix * ( a + 1 ) ) >> 8;
510 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
511 dest++;
512 *dest = ( *src++ * mix + *dest * ( ( 1 << 16 ) - mix ) ) >> 16;
513 dest++;
514 }
515 }
516
517 /** Composite function.
518 */
519
520 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
521 {
522 int ret = 0;
523 int i;
524 int x_src = 0, y_src = 0;
525 int32_t weight = ( 1 << 16 ) * ( geometry.mix / 100 );
526 int step = ( field > -1 ) ? 2 : 1;
527 int bpp = 2;
528 int stride_src = width_src * bpp;
529 int stride_dest = width_dest * bpp;
530
531 // Adjust to consumer scale
532 int x = geometry.x * width_dest / geometry.nw;
533 int y = geometry.y * height_dest / geometry.nh;
534
535 // Align x to a full YUYV group
536 x &= 0xfffffffe;
537 width_src &= 0xfffffffe;
538
539 // optimization points - no work to do
540 if ( width_src <= 0 || height_src <= 0 )
541 return ret;
542
543 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
544 return ret;
545
546 // crop overlay off the left edge of frame
547 if ( x < 0 )
548 {
549 x_src = -x;
550 width_src -= x_src;
551 x = 0;
552 }
553
554 // crop overlay beyond right edge of frame
555 if ( x + width_src > width_dest )
556 width_src = width_dest - x;
557
558 // crop overlay off the top edge of the frame
559 if ( y < 0 )
560 {
561 y_src = -y;
562 height_src -= y_src;
563 }
564
565 // crop overlay below bottom edge of frame
566 if ( y + height_src > height_dest )
567 height_src = height_dest - y;
568
569 // offset pointer into overlay buffer based on cropping
570 p_src += x_src * bpp + y_src * stride_src;
571
572 // offset pointer into frame buffer based upon positive coordinates only!
573 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
574
575 // offset pointer into alpha channel based upon cropping
576 if ( p_alpha )
577 p_alpha += x_src + y_src * stride_src / bpp;
578
579 // offset pointer into luma channel based upon cropping
580 if ( p_luma )
581 p_luma += x_src + y_src * stride_src / bpp;
582
583 // Assuming lower field first
584 // Special care is taken to make sure the b_frame is aligned to the correct field.
585 // field 0 = lower field and y should be odd (y is 0-based).
586 // field 1 = upper field and y should be even.
587 if ( ( field > -1 ) && ( y % 2 == field ) )
588 {
589 //fprintf( stderr, "field %d y %d\n", field, y );
590 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
591 p_dest += stride_dest;
592 else
593 p_dest -= stride_dest;
594 }
595
596 // On the second field, use the other lines from b_frame
597 if ( field == 1 )
598 {
599 p_src += stride_src;
600 if ( p_alpha )
601 p_alpha += stride_src / bpp;
602 height_src--;
603 }
604
605 stride_src *= step;
606 stride_dest *= step;
607 int alpha_stride = stride_src / bpp;
608
609 if ( line_fn == NULL )
610 line_fn = composite_line_yuv;
611
612 // now do the compositing only to cropped extents
613 for ( i = 0; i < height_src; i += step )
614 {
615 line_fn( p_dest, p_src, width_src, p_alpha, weight, p_luma, softness );
616
617 p_src += stride_src;
618 p_dest += stride_dest;
619 if ( p_alpha )
620 p_alpha += alpha_stride;
621 if ( p_luma )
622 p_luma += alpha_stride;
623 }
624
625 return ret;
626 }
627
628
629 /** Scale 16bit greyscale luma map using nearest neighbor.
630 */
631
632 static inline void
633 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height )
634 {
635 register int i, j;
636 register int x_step = ( src_width << 16 ) / dest_width;
637 register int y_step = ( src_height << 16 ) / dest_height;
638 register int x, y = 0;
639
640 for ( i = 0; i < dest_height; i++ )
641 {
642 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
643 x = 0;
644
645 for ( j = 0; j < dest_width; j++ )
646 {
647 *dest_buf++ = src[ x >> 16 ];
648 x += x_step;
649 }
650 y += y_step;
651 }
652 }
653
654 static uint16_t* get_luma( mlt_properties properties, int width, int height )
655 {
656 // The cached luma map information
657 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
658 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
659 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
660
661 // If the filename property changed, reload the map
662 char *resource = mlt_properties_get( properties, "luma" );
663
664 if ( resource != NULL && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
665 {
666 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
667 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
668 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
669
670 // Load the original luma once
671 if ( orig_bitmap == NULL )
672 {
673 char *extension = extension = strrchr( resource, '.' );
674
675 // See if it is a PGM
676 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
677 {
678 // Open PGM
679 FILE *f = fopen( resource, "r" );
680 if ( f != NULL )
681 {
682 // Load from PGM
683 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
684 fclose( f );
685
686 // Remember the original size for subsequent scaling
687 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
688 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
689 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
690 }
691 }
692 else
693 {
694 // Get the factory producer service
695 char *factory = mlt_properties_get( properties, "factory" );
696
697 // Create the producer
698 mlt_producer producer = mlt_factory_producer( factory, resource );
699
700 // If we have one
701 if ( producer != NULL )
702 {
703 // Get the producer properties
704 mlt_properties producer_properties = mlt_producer_properties( producer );
705
706 // Ensure that we loop
707 mlt_properties_set( producer_properties, "eof", "loop" );
708
709 // Now pass all producer. properties on the transition down
710 mlt_properties_pass( producer_properties, properties, "luma." );
711
712 // We will get the alpha frame from the producer
713 mlt_frame luma_frame = NULL;
714
715 // Get the luma frame
716 if ( mlt_service_get_frame( mlt_producer_service( producer ), &luma_frame, 0 ) == 0 )
717 {
718 uint8_t *luma_image;
719 mlt_image_format luma_format = mlt_image_yuv422;
720
721 // Get image from the luma producer
722 mlt_properties_set( mlt_frame_properties( luma_frame ), "rescale.interp", "none" );
723 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
724
725 // Generate the luma map
726 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
727 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
728
729 // Remember the original size for subsequent scaling
730 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
731 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
732 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
733
734 // Cleanup the luma frame
735 mlt_frame_close( luma_frame );
736 }
737
738 // Cleanup the luma producer
739 mlt_producer_close( producer );
740 }
741 }
742 }
743 // Scale luma map
744 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
745 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height );
746
747 // Remember the scaled luma size to prevent unnecessary scaling
748 mlt_properties_set_int( properties, "_luma.width", width );
749 mlt_properties_set_int( properties, "_luma.height", height );
750 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
751 }
752 return luma_bitmap;
753 }
754
755 /** Get the properly sized image from b_frame.
756 */
757
758 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
759 {
760 int ret = 0;
761 mlt_image_format format = mlt_image_yuv422;
762
763 // Get the properties objects
764 mlt_properties b_props = mlt_frame_properties( b_frame );
765 mlt_properties properties = mlt_transition_properties( this );
766
767 if ( mlt_properties_get( properties, "distort" ) == NULL && geometry->distort == 0 )
768 {
769 // Adjust b_frame pixel aspect
770 int normalised_width = geometry->w;
771 int normalised_height = geometry->h;
772 int real_width = get_value( b_props, "real_width", "width" );
773 int real_height = get_value( b_props, "real_height", "height" );
774 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
775 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
776 int scaled_width = input_ar / output_ar * real_width;
777 int scaled_height = real_height;
778
779 // Now ensure that our images fit in the normalised frame
780 if ( scaled_width > normalised_width )
781 {
782 scaled_height = scaled_height * normalised_width / scaled_width;
783 scaled_width = normalised_width;
784 }
785 if ( scaled_height > normalised_height )
786 {
787 scaled_width = scaled_width * normalised_height / scaled_height;
788 scaled_height = normalised_height;
789 }
790
791 // Now apply the fill
792 // TODO: Should combine fill/distort in one property
793 if ( mlt_properties_get( properties, "fill" ) != NULL )
794 {
795 scaled_width = ( geometry->w / scaled_width ) * scaled_width;
796 scaled_height = ( geometry->h / scaled_height ) * scaled_height;
797 }
798
799 // Save the new scaled dimensions
800 geometry->sw = scaled_width;
801 geometry->sh = scaled_height;
802 }
803 else
804 {
805 geometry->sw = geometry->w;
806 geometry->sh = geometry->h;
807 }
808
809 // We want to ensure that we bypass resize now...
810 mlt_properties_set( b_props, "distort", "true" );
811
812 // Take into consideration alignment for optimisation
813 alignment_calculate( geometry );
814
815 // Adjust to consumer scale
816 int x = geometry->x * *width / geometry->nw;
817 int y = geometry->y * *height / geometry->nh;
818 *width = geometry->sw * *width / geometry->nw;
819 *height = geometry->sh * *height / geometry->nh;
820
821 x &= 0xfffffffe;
822
823 // optimization points - no work to do
824 if ( *width < 1 || *height < 1 )
825 return 1;
826
827 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
828 return 1;
829
830 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
831
832 return ret;
833 }
834
835
836 struct geometry_s *composite_calculate( struct geometry_s *result, mlt_transition this, mlt_frame a_frame, float position )
837 {
838 // Get the properties from the transition
839 mlt_properties properties = mlt_transition_properties( this );
840
841 // Get the properties from the frame
842 mlt_properties a_props = mlt_frame_properties( a_frame );
843
844 // Structures for geometry
845 struct geometry_s *start = mlt_properties_get_data( properties, "geometries", NULL );
846
847 // Now parse the geometries
848 if ( start == NULL )
849 {
850 // Obtain the normalised width and height from the a_frame
851 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
852 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
853
854 // Parse the transitions properties
855 start = transition_parse_keys( this, normalised_width, normalised_height );
856 }
857
858 // Do the calculation
859 geometry_calculate( result, start, position );
860
861 // Now parse the alignment
862 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
863 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
864
865 return start;
866 }
867
868 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
869 {
870 // Create a frame to return
871 mlt_frame b_frame = mlt_frame_init( );
872
873 // Get the properties of the a frame
874 mlt_properties a_props = mlt_frame_properties( a_frame );
875
876 // Get the properties of the b frame
877 mlt_properties b_props = mlt_frame_properties( b_frame );
878
879 // Get the position
880 float position = position_calculate( this, frame_position );
881
882 // Destination image
883 uint8_t *dest = NULL;
884
885 // Get the image and dimensions
886 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
887 int width = mlt_properties_get_int( a_props, "width" );
888 int height = mlt_properties_get_int( a_props, "height" );
889
890 // Pointers for copy operation
891 uint8_t *p;
892 uint8_t *q;
893 uint8_t *r;
894
895 // Corrdinates
896 int w = 0;
897 int h = 0;
898 int x = 0;
899 int y = 0;
900
901 // Will need to know region to copy
902 struct geometry_s result;
903
904 // Calculate the region now
905 composite_calculate( &result, this, a_frame, position );
906
907 // Need to scale down to actual dimensions
908 x = result.x * width / result.nw ;
909 y = result.y * height / result.nh;
910 w = result.w * width / result.nw;
911 h = result.h * height / result.nh;
912
913 x &= 0xfffffffe;
914 //w &= 0xfffffffe;
915
916 // Now we need to create a new destination image
917 dest = mlt_pool_alloc( w * h * 2 );
918
919 // Copy the region of the image
920 p = image + y * width * 2 + x * 2;
921 q = dest;
922 r = dest + w * h * 2;
923
924 while ( q < r )
925 {
926 memcpy( q, p, w * 2 );
927 q += w * 2;
928 p += width * 2;
929 }
930
931 // Assign to the new frame
932 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
933 mlt_properties_set_int( b_props, "width", w );
934 mlt_properties_set_int( b_props, "height", h );
935
936 // Assign this position to the b frame
937 mlt_frame_set_position( b_frame, frame_position );
938
939 // Return the frame
940 return b_frame;
941 }
942
943 /** Get the image.
944 */
945
946 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
947 {
948 // Get the b frame from the stack
949 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
950
951 // Get the transition from the a frame
952 mlt_transition this = mlt_frame_pop_service( a_frame );
953
954 // This compositer is yuv422 only
955 *format = mlt_image_yuv422;
956
957 // Get the image from the a frame
958 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
959
960 if ( b_frame != NULL )
961 {
962 // Get the properties of the a frame
963 mlt_properties a_props = mlt_frame_properties( a_frame );
964
965 // Get the properties of the b frame
966 mlt_properties b_props = mlt_frame_properties( b_frame );
967
968 // Get the properties from the transition
969 mlt_properties properties = mlt_transition_properties( this );
970
971 // Structures for geometry
972 struct geometry_s result;
973
974 // Calculate the position
975 float position = mlt_properties_get_double( b_props, "relative_position" );
976 float delta = delta_calculate( this, a_frame );
977
978 // Do the calculation
979 struct geometry_s *start = composite_calculate( &result, this, a_frame, position );
980
981 // Optimisation - no compositing required
982 if ( result.mix == 0 || ( result.w == 0 && result.h == 0 ) )
983 return 0;
984
985 // Since we are the consumer of the b_frame, we must pass along these
986 // consumer properties from the a_frame
987 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
988
989 // Get the image from the b frame
990 uint8_t *image_b = NULL;
991 int width_b = *width;
992 int height_b = *height;
993
994 if ( get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
995 {
996 uint8_t *dest = *image;
997 uint8_t *src = image_b;
998 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
999 int progressive =
1000 mlt_properties_get_int( a_props, "consumer_progressive" ) ||
1001 mlt_properties_get_int( properties, "progressive" );
1002 int field;
1003
1004 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1005 uint16_t *luma_bitmap = get_luma( properties, width_b, height_b );
1006 composite_line_fn line_fn = mlt_properties_get_int( properties, "_MMX" ) ? composite_line_yuv_mmx : composite_line_yuv;
1007
1008 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1009 {
1010 // Assume lower field (0) first
1011 float field_position = position + field * delta;
1012
1013 // Do the calculation if we need to
1014 geometry_calculate( &result, start, field_position );
1015
1016 // Align
1017 alignment_calculate( &result );
1018
1019 // Composite the b_frame on the a_frame
1020 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1021 }
1022 }
1023 }
1024
1025 return 0;
1026 }
1027
1028 /** Composition transition processing.
1029 */
1030
1031 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1032 {
1033 // Get a unique name to store the frame position
1034 char *name = mlt_properties_get( mlt_transition_properties( this ), "_unique_id" );
1035
1036 // Assign the current position to the name
1037 mlt_properties_set_position( mlt_frame_properties( a_frame ), name, mlt_frame_get_position( a_frame ) );
1038
1039 // Propogate the transition properties to the b frame
1040 mlt_properties_set_double( mlt_frame_properties( b_frame ), "relative_position", position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1041
1042 mlt_frame_push_service( a_frame, this );
1043 mlt_frame_push_frame( a_frame, b_frame );
1044 mlt_frame_push_get_image( a_frame, transition_get_image );
1045 return a_frame;
1046 }
1047
1048 /** Constructor for the filter.
1049 */
1050
1051 mlt_transition transition_composite_init( char *arg )
1052 {
1053 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1054 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1055 {
1056 mlt_properties properties = mlt_transition_properties( this );
1057
1058 this->process = composite_process;
1059
1060 // Default starting motion and zoom
1061 mlt_properties_set( properties, "start", arg != NULL ? arg : "85%,5%:10%x10%" );
1062
1063 // Default factory
1064 mlt_properties_set( properties, "factory", "fezzik" );
1065
1066 #ifdef USE_MMX
1067 //mlt_properties_set_int( properties, "_MMX", composite_have_mmx() );
1068 #endif
1069 }
1070 return this;
1071 }