field rendering fix and disable scaling height when normalising pixel aspect when...
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt_frame.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27
28 /** Geometry struct.
29 */
30
31 struct geometry_s
32 {
33 int nw; // normalised width
34 int nh; // normalised height
35 int sw; // scaled width, not including consumer scale based upon w/nw
36 int sh; // scaled height, not including consumer scale based upon h/nh
37 float x;
38 float y;
39 float w;
40 float h;
41 float mix;
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44 };
45
46 /** Parse a value from a geometry string.
47 */
48
49 static float parse_value( char **ptr, int normalisation, char delim, float defaults )
50 {
51 float value = defaults;
52
53 if ( *ptr != NULL && **ptr != '\0' )
54 {
55 char *end = NULL;
56 value = strtod( *ptr, &end );
57 if ( end != NULL )
58 {
59 if ( *end == '%' )
60 value = ( value / 100.0 ) * normalisation;
61 while ( *end == delim || *end == '%' )
62 end ++;
63 }
64 *ptr = end;
65 }
66
67 return value;
68 }
69
70 /** Parse a geometry property string with the syntax X,Y:WxH:MIX. Any value can be
71 expressed as a percentage by appending a % after the value, otherwise values are
72 assumed to be relative to the normalised dimensions of the consumer.
73 */
74
75 static void geometry_parse( struct geometry_s *geometry, struct geometry_s *defaults, char *property, int nw, int nh )
76 {
77 // Assign normalised width and height
78 geometry->nw = nw;
79 geometry->nh = nh;
80
81 // Assign from defaults if available
82 if ( defaults != NULL )
83 {
84 geometry->x = defaults->x;
85 geometry->y = defaults->y;
86 geometry->w = geometry->sw = defaults->w;
87 geometry->h = geometry->sh = defaults->h;
88 geometry->mix = defaults->mix;
89 }
90 else
91 {
92 geometry->mix = 100;
93 }
94
95 // Parse the geomtry string
96 if ( property != NULL )
97 {
98 char *ptr = property;
99 geometry->x = parse_value( &ptr, nw, ',', geometry->x );
100 geometry->y = parse_value( &ptr, nh, ':', geometry->y );
101 geometry->w = geometry->sw = parse_value( &ptr, nw, 'x', geometry->w );
102 geometry->h = geometry->sh = parse_value( &ptr, nh, ':', geometry->h );
103 geometry->mix = parse_value( &ptr, 100, ' ', geometry->mix );
104 }
105 }
106
107 /** Calculate real geometry.
108 */
109
110 static void geometry_calculate( struct geometry_s *output, struct geometry_s *in, struct geometry_s *out, float position )
111 {
112 // Calculate this frames geometry
113 output->nw = in->nw;
114 output->nh = in->nh;
115 output->x = in->x + ( out->x - in->x ) * position + 0.5;
116 output->y = in->y + ( out->y - in->y ) * position + 0.5;
117 output->w = in->w + ( out->w - in->w ) * position;
118 output->h = in->h + ( out->h - in->h ) * position;
119 output->mix = in->mix + ( out->mix - in->mix ) * position;
120 }
121
122 /** Parse the alignment properties into the geometry.
123 */
124
125 static int alignment_parse( char* align )
126 {
127 int ret = 0;
128
129 if ( align == NULL );
130 else if ( isdigit( align[ 0 ] ) )
131 ret = atoi( align );
132 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
133 ret = 1;
134 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
135 ret = 2;
136
137 return ret;
138 }
139
140 /** Adjust position according to scaled size and alignment properties.
141 */
142
143 static void alignment_calculate( struct geometry_s *geometry )
144 {
145 geometry->x += ( geometry->w - geometry->sw ) * geometry->halign / 2 + 0.5;
146 geometry->y += ( geometry->h - geometry->sh ) * geometry->valign / 2 + 0.5;
147 }
148
149 /** Calculate the position for this frame.
150 */
151
152 static float position_calculate( mlt_transition this, mlt_frame frame )
153 {
154 // Get the in and out position
155 mlt_position in = mlt_transition_get_in( this );
156 mlt_position out = mlt_transition_get_out( this );
157
158 // Get the position of the frame
159 mlt_position position = mlt_frame_get_position( frame );
160
161 // Now do the calcs
162 return ( float )( position - in ) / ( float )( out - in + 1 );
163 }
164
165 /** Calculate the field delta for this frame - position between two frames.
166 */
167
168 static float delta_calculate( mlt_transition this, mlt_frame frame )
169 {
170 // Get the in and out position
171 mlt_position in = mlt_transition_get_in( this );
172 mlt_position out = mlt_transition_get_out( this );
173
174 // Get the position of the frame
175 mlt_position position = mlt_frame_get_position( frame );
176
177 // Now do the calcs
178 float x = ( float )( position - in ) / ( float )( out - in + 1 );
179 position++;
180 float y = ( float )( position - in ) / ( float )( out - in + 1 );
181
182 return ( y - x ) / 2.0;
183 }
184
185 static int get_value( mlt_properties properties, char *preferred, char *fallback )
186 {
187 int value = mlt_properties_get_int( properties, preferred );
188 if ( value == 0 )
189 value = mlt_properties_get_int( properties, fallback );
190 return value;
191 }
192
193 /** Composite function.
194 */
195
196 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, int bpp, uint8_t *p_src, int width_src, int height_src, uint8_t *p_alpha, struct geometry_s geometry, int field )
197 {
198 int ret = 0;
199 int i, j, k;
200 int x_src = 0, y_src = 0;
201 float weight = geometry.mix / 100;
202 int stride_src = width_src * bpp;
203 int stride_dest = width_dest * bpp;
204
205 // Adjust to consumer scale
206 int x = geometry.x * width_dest / geometry.nw + 0.5;
207 int y = geometry.y * height_dest / geometry.nh + 0.5;
208
209 if ( bpp == 2 )
210 x -= x % 2;
211
212 // optimization points - no work to do
213 if ( width_src <= 0 || height_src <= 0 )
214 return ret;
215
216 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
217 return ret;
218
219 // crop overlay off the left edge of frame
220 if ( x < 0 )
221 {
222 x_src = -x;
223 width_src -= x_src;
224 x = 0;
225 }
226
227 // crop overlay beyond right edge of frame
228 else if ( x + width_src > width_dest )
229 width_src = width_dest - x;
230
231 // crop overlay off the top edge of the frame
232 if ( y < 0 )
233 {
234 y_src = -y;
235 height_src -= y_src;
236 }
237 // crop overlay below bottom edge of frame
238 else if ( y + height_src > height_dest )
239 height_src = height_dest - y;
240
241 // offset pointer into overlay buffer based on cropping
242 p_src += x_src * bpp + y_src * stride_src;
243
244 // offset pointer into frame buffer based upon positive coordinates only!
245 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
246
247 // offset pointer into alpha channel based upon cropping
248 if ( p_alpha )
249 p_alpha += x_src + y_src * stride_src / bpp;
250
251 // Assuming lower field first
252 // Special care is taken to make sure the b_frame is aligned to the correct field.
253 // field 0 = lower field and y should be odd (y is 0-based).
254 // field 1 = upper field and y should be even.
255 if ( ( field > -1 ) && ( y % 2 == field ) )
256 {
257 //fprintf( stderr, "field %d y %d\n", field, y );
258 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
259 p_dest += stride_dest;
260 else
261 p_dest -= stride_dest;
262 }
263
264 // On the second field, use the other lines from b_frame
265 if ( field == 1 )
266 {
267 p_src += stride_src;
268 if ( p_alpha )
269 p_alpha += stride_src / bpp;
270 height_src--;
271 }
272
273 uint8_t *p = p_src;
274 uint8_t *q = p_dest;
275 uint8_t *o = p_dest;
276 uint8_t *z = p_alpha;
277
278 uint8_t a;
279 float value;
280 int step = ( field > -1 ) ? 2 : 1;
281
282 // now do the compositing only to cropped extents
283 for ( i = 0; i < height_src; i += step )
284 {
285 p = &p_src[ i * stride_src ];
286 q = &p_dest[ i * stride_dest ];
287 o = &p_dest[ i * stride_dest ];
288 if ( p_alpha )
289 z = &p_alpha[ i * stride_src / bpp ];
290
291 for ( j = 0; j < width_src; j ++ )
292 {
293 a = ( z == NULL ) ? 255 : *z ++;
294 value = ( weight * ( float ) a / 255.0 );
295 for ( k = 0; k < bpp; k ++ )
296 *o ++ = (uint8_t)( *p++ * value + *q++ * ( 1 - value ) );
297 }
298 }
299
300 return ret;
301 }
302
303
304 /** Get the properly sized image from b_frame.
305 */
306
307 static int get_b_frame_image( mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
308 {
309 int ret = 0;
310 mlt_image_format format = mlt_image_yuv422;
311
312 // Initialise the scaled dimensions from the computed
313 geometry->sw = geometry->w;
314 geometry->sh = geometry->h;
315
316 // Compute the dimensioning rectangle
317 mlt_properties b_props = mlt_frame_properties( b_frame );
318 mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
319 mlt_properties properties = mlt_transition_properties( this );
320
321 if ( mlt_properties_get( properties, "distort" ) == NULL )
322 {
323 // Adjust b_frame pixel aspect
324 int normalised_width = geometry->w;
325 int normalised_height = geometry->h;
326 int real_width = get_value( b_props, "real_width", "width" );
327 int real_height = get_value( b_props, "real_height", "height" );
328 double input_ar = mlt_frame_get_aspect_ratio( b_frame );
329 double output_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
330 //int scaled_width = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_width;
331 //int scaled_height = ( input_ar > output_ar ? input_ar / output_ar : output_ar / input_ar ) * real_height;
332 int scaled_width = real_width;
333 int scaled_height = real_height;
334 double output_sar = ( double ) geometry->nw / geometry->nh / output_ar;
335
336 // We always normalise pixel aspect by requesting a larger than normal
337 // image in order to maximise usage of the bounding rectangle
338
339 // These calcs are optimised by reducing factors in equations
340 // This is disabled due to bad results on 480 wide MPEGs
341 #if 0
342 if ( output_sar < 1.0 )
343 // If the output is skinny pixels (PAL) then stretch our input vertically
344 // derived from: input_sar / output_sar * real_height
345 scaled_height = ( double )real_width / input_ar / output_sar;
346
347 else
348 #endif
349 // If the output is fat pixels (NTSC) then stretch our input horizontally
350 // derived from: output_sar / input_sar * real_width
351 scaled_width = output_sar * real_height * input_ar;
352
353 // fprintf( stderr, "composite: real %dx%d scaled %dx%d normalised %dx%d\n", real_width, real_height, scaled_width, scaled_height, normalised_width, normalised_height );
354
355 // Now ensure that our images fit in the normalised frame
356 if ( scaled_width > normalised_width )
357 {
358 scaled_height = scaled_height * normalised_width / scaled_width;
359 scaled_width = normalised_width;
360 }
361 if ( scaled_height > normalised_height )
362 {
363 scaled_width = scaled_width * normalised_height / scaled_height;
364 scaled_height = normalised_height;
365 }
366
367 // Now we need to align to the geometry
368 if ( scaled_width <= geometry->w && scaled_height <= geometry->h )
369 {
370 // Save the new scaled dimensions
371 geometry->sw = scaled_width;
372 geometry->sh = scaled_height;
373 }
374 }
375
376 // We want to ensure that we bypass resize now...
377 mlt_properties_set( b_props, "distort", "true" );
378
379 // Take into consideration alignment for optimisation
380 alignment_calculate( geometry );
381
382 // Adjust to consumer scale
383 int x = geometry->x * *width / geometry->nw + 0.5;
384 int y = geometry->y * *height / geometry->nh + 0.5;
385 *width = geometry->sw * *width / geometry->nw;
386 *height = geometry->sh * *height / geometry->nh;
387
388 x -= x % 2;
389
390 //fprintf( stderr, "composite calculated %d,%d:%dx%d\n", x, y, *width, *height );
391
392 // optimization points - no work to do
393 if ( *width <= 0 || *height <= 0 )
394 return 1;
395
396 if ( ( x < 0 && -x >= *width ) || ( y < 0 && -y >= *height ) )
397 return 1;
398
399 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 /* writable */ );
400
401 return ret;
402 }
403
404
405 static uint8_t *transition_get_alpha_mask( mlt_frame this )
406 {
407 // Obtain properties of frame
408 mlt_properties properties = mlt_frame_properties( this );
409
410 // Return the alpha mask
411 return mlt_properties_get_data( properties, "alpha", NULL );
412 }
413
414 /** Get the image.
415 */
416
417 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
418 {
419 // Get the b frame from the stack
420 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
421
422 // This compositer is yuv422 only
423 *format = mlt_image_yuv422;
424
425 // Get the image from the a frame
426 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
427
428 if ( b_frame != NULL )
429 {
430 // Get the properties of the a frame
431 mlt_properties a_props = mlt_frame_properties( a_frame );
432
433 // Get the properties of the b frame
434 mlt_properties b_props = mlt_frame_properties( b_frame );
435
436 // Get the transition from the b frame
437 mlt_transition this = mlt_properties_get_data( b_props, "transition_composite", NULL );
438
439 // Get the properties from the transition
440 mlt_properties properties = mlt_transition_properties( this );
441
442 // Structures for geometry
443 struct geometry_s result;
444 struct geometry_s start;
445 struct geometry_s end;
446
447 // Calculate the position
448 float position = position_calculate( this, a_frame );
449 float delta = delta_calculate( this, a_frame );
450
451 // Obtain the normalised width and height from the a_frame
452 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
453 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
454
455 // Now parse the geometries
456 geometry_parse( &start, NULL, mlt_properties_get( properties, "start" ), normalised_width, normalised_height );
457 geometry_parse( &end, &start, mlt_properties_get( properties, "end" ), normalised_width, normalised_height );
458
459 // Now parse the alignment
460 result.halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
461 result.valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
462
463 // Since we are the consumer of the b_frame, we must pass along these
464 // consumer properties from the a_frame
465 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
466 mlt_properties_set_double( b_props, "consumer_scale", mlt_properties_get_double( a_props, "consumer_scale" ) );
467
468 // Do the calculation
469 geometry_calculate( &result, &start, &end, position );
470
471 // Get the image from the b frame
472 uint8_t *image_b;
473 int width_b = *width;
474 int height_b = *height;
475
476 if ( get_b_frame_image( b_frame, &image_b, &width_b, &height_b, &result ) == 0 )
477 {
478 uint8_t *dest = *image;
479 uint8_t *src = image_b;
480 int bpp = 2;
481 uint8_t *alpha = mlt_frame_get_alpha_mask( b_frame );
482 int progressive = mlt_properties_get_int( a_props, "progressive" ) ||
483 mlt_properties_get_int( a_props, "consumer_progressive" ) ||
484 mlt_properties_get_int( properties, "progressive" );
485 int field;
486
487 // See if the alpha channel is our destination
488 if ( mlt_properties_get( properties, "a_frame" ) != NULL )
489 {
490 bpp = 1;
491
492 // Get or make the a_frame alpha channel
493 dest = mlt_frame_get_alpha_mask( a_frame );
494 if ( dest == NULL )
495 {
496 // Allocate the alpha
497 dest = mlt_pool_alloc( *width * *height );
498 mlt_properties_set_data( a_props, "alpha", dest, *width * *height, ( mlt_destructor )mlt_pool_release, NULL );
499
500 // Set alpha call back
501 a_frame->get_alpha_mask = transition_get_alpha_mask;
502 }
503
504 // If the source is an image, convert its YUV to an alpha channel
505 if ( mlt_properties_get( properties, "b_frame" ) == NULL )
506 {
507 if ( alpha == NULL )
508 {
509 // Allocate the alpha
510 alpha = mlt_pool_alloc( width_b * height_b );
511 mlt_properties_set_data( b_props, "alpha", alpha, width_b * height_b, ( mlt_destructor )mlt_pool_release, NULL );
512
513 // Set alpha call back
514 b_frame->get_alpha_mask = transition_get_alpha_mask;
515 }
516
517 // Copy the Y values into alpha
518 uint8_t *p = image_b;
519 uint8_t *q = alpha;
520 int i;
521 for ( i = 0; i < width_b * height_b; i ++, p += 2 )
522 *q ++ = *p;
523
524 // Setup to composite from the alpha channel
525 src = alpha;
526 alpha = NULL;
527 }
528 }
529
530 // See if the alpha channel is our source
531 if ( mlt_properties_get( properties, "b_frame" ) != NULL )
532 {
533 // If we do not have an alpha channel fabricate it
534 if ( alpha == NULL )
535 {
536 // Allocate the alpha
537 alpha = mlt_pool_alloc( width_b * height_b );
538 mlt_properties_set_data( b_props, "alpha", alpha, width_b * height_b, ( mlt_destructor )mlt_pool_release, NULL );
539
540 // Set alpha call back
541 b_frame->get_alpha_mask = transition_get_alpha_mask;
542
543 // Copy the Y values into alpha
544 uint8_t *p = image_b;
545 uint8_t *q = alpha;
546 int i;
547 for ( i = 0; i < width_b * height_b; i ++, p += 2 )
548 *q ++ = *p;
549 }
550
551 // If the destination is image, convert the alpha channel to YUV
552 if ( mlt_properties_get( properties, "a_frame" ) == NULL )
553 {
554 uint8_t *p = alpha;
555 uint8_t *q = image_b;
556 int i;
557
558 for ( i = 0; i < width_b * height_b; i ++, p ++ )
559 {
560 *q ++ = 16 + ( ( float )*p / 255 * 219 ); // 220 is the luma range from 16-235
561 *q ++ = 128;
562 }
563 }
564 else
565 {
566 // Setup to composite from the alpha channel
567 src = alpha;
568 bpp = 1;
569 }
570
571 // Never the apply the alpha channel to this type of operation
572 alpha = NULL;
573 }
574
575 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
576 {
577 // Assume lower field (0) first
578 float field_position = position + field * delta;
579
580 // Do the calculation
581 geometry_calculate( &result, &start, &end, field_position );
582
583 // Align
584 alignment_calculate( &result );
585
586 // Composite the b_frame on the a_frame
587 composite_yuv( dest, *width, *height, bpp, src, width_b, height_b, alpha, result, progressive ? -1 : field );
588 }
589 }
590 }
591
592 return 0;
593 }
594
595 /** Composition transition processing.
596 */
597
598 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
599 {
600 // Propogate the transition properties to the b frame
601 mlt_properties b_props = mlt_frame_properties( b_frame );
602 mlt_properties_set_data( b_props, "transition_composite", this, 0, NULL, NULL );
603 mlt_frame_push_get_image( a_frame, transition_get_image );
604 mlt_frame_push_frame( a_frame, b_frame );
605 return a_frame;
606 }
607
608 /** Constructor for the filter.
609 */
610
611 mlt_transition transition_composite_init( char *arg )
612 {
613 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
614 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
615 {
616 this->process = composite_process;
617 mlt_properties_set( mlt_transition_properties( this ), "start", arg != NULL ? arg : "85%,5%:10%x10%" );
618 mlt_properties_set( mlt_transition_properties( this ), "end", "" );
619 }
620 return this;
621 }
622