Merge ../mlt
[melted] / src / modules / core / transition_composite.c
1 /*
2 * transition_composite.c -- compose one image over another using alpha channel
3 * Copyright (C) 2003-2004 Ushodaya Enterprises Limited
4 * Author: Dan Dennedy <dan@dennedy.org>
5 *
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 */
20
21 #include "transition_composite.h"
22 #include <framework/mlt.h>
23
24 #include <stdio.h>
25 #include <stdlib.h>
26 #include <ctype.h>
27 #include <string.h>
28 #include <math.h>
29
30 typedef void ( *composite_line_fn )( uint8_t *dest, uint8_t *src, int width_src, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int softness );
31
32 /** Geometry struct.
33 */
34
35 struct geometry_s
36 {
37 struct mlt_geometry_item_s item;
38 int nw; // normalised width
39 int nh; // normalised height
40 int sw; // scaled width, not including consumer scale based upon w/nw
41 int sh; // scaled height, not including consumer scale based upon h/nh
42 int halign; // horizontal alignment: 0=left, 1=center, 2=right
43 int valign; // vertical alignment: 0=top, 1=middle, 2=bottom
44 int x_src;
45 int y_src;
46 };
47
48 /** Parse the alignment properties into the geometry.
49 */
50
51 static int alignment_parse( char* align )
52 {
53 int ret = 0;
54
55 if ( align == NULL );
56 else if ( isdigit( align[ 0 ] ) )
57 ret = atoi( align );
58 else if ( align[ 0 ] == 'c' || align[ 0 ] == 'm' )
59 ret = 1;
60 else if ( align[ 0 ] == 'r' || align[ 0 ] == 'b' )
61 ret = 2;
62
63 return ret;
64 }
65
66 /** Calculate real geometry.
67 */
68
69 static void geometry_calculate( mlt_transition this, struct geometry_s *output, double position )
70 {
71 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
72 mlt_geometry geometry = mlt_properties_get_data( properties, "geometries", NULL );
73 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
74 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
75 int length = mlt_geometry_get_length( geometry );
76
77 // Allow wrapping
78 if ( !repeat_off && position >= length && length != 0 )
79 {
80 int section = position / length;
81 position -= section * length;
82 if ( !mirror_off && section % 2 == 1 )
83 position = length - position;
84 }
85
86 // Fetch the key for the position
87 mlt_geometry_fetch( geometry, &output->item, position );
88 }
89
90 static mlt_geometry transition_parse_keys( mlt_transition this, int normalised_width, int normalised_height )
91 {
92 // Loop variable for property interrogation
93 int i = 0;
94
95 // Get the properties of the transition
96 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
97
98 // Create an empty geometries object
99 mlt_geometry geometry = mlt_geometry_init( );
100
101 // Get the in and out position
102 mlt_position in = mlt_transition_get_in( this );
103 mlt_position out = mlt_transition_get_out( this );
104 int length = out - in + 1;
105 double cycle = mlt_properties_get_double( properties, "cycle" );
106
107 // Get the new style geometry string
108 char *property = mlt_properties_get( properties, "geometry" );
109
110 // Allow a geometry repeat cycle
111 if ( cycle >= 1 )
112 length = cycle;
113 else if ( cycle > 0 )
114 length *= cycle;
115
116 // Parse the geometry if we have one
117 mlt_geometry_parse( geometry, property, length, normalised_width, normalised_height );
118
119 // Check if we're using the old style geometry
120 if ( property == NULL )
121 {
122 // DEPRECATED: Multiple keys for geometry information is inefficient and too rigid for
123 // practical use - while deprecated, it has been slightly extended too - keys can now
124 // be specified out of order, and can be blanked or NULL to simulate removal
125
126 // Structure to use for parsing and inserting
127 struct mlt_geometry_item_s item;
128
129 // Parse the start property
130 item.frame = 0;
131 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "start" ) ) == 0 )
132 mlt_geometry_insert( geometry, &item );
133
134 // Parse the keys in between
135 for ( i = 0; i < mlt_properties_count( properties ); i ++ )
136 {
137 // Get the name of the property
138 char *name = mlt_properties_get_name( properties, i );
139
140 // Check that it's valid
141 if ( !strncmp( name, "key[", 4 ) )
142 {
143 // Get the value of the property
144 char *value = mlt_properties_get_value( properties, i );
145
146 // Determine the frame number
147 item.frame = atoi( name + 4 );
148
149 // Parse and add to the list
150 if ( mlt_geometry_parse_item( geometry, &item, value ) == 0 )
151 mlt_geometry_insert( geometry, &item );
152 else
153 fprintf( stderr, "Invalid Key - skipping %s = %s\n", name, value );
154 }
155 }
156
157 // Parse the end
158 item.frame = -1;
159 if ( mlt_geometry_parse_item( geometry, &item, mlt_properties_get( properties, "end" ) ) == 0 )
160 mlt_geometry_insert( geometry, &item );
161 }
162
163 return geometry;
164 }
165
166 /** Adjust position according to scaled size and alignment properties.
167 */
168
169 static void alignment_calculate( struct geometry_s *geometry )
170 {
171 geometry->item.x += ( geometry->item.w - geometry->sw ) * geometry->halign / 2;
172 geometry->item.y += ( geometry->item.h - geometry->sh ) * geometry->valign / 2;
173 }
174
175 /** Calculate the position for this frame.
176 */
177
178 static int position_calculate( mlt_transition this, mlt_position position )
179 {
180 // Get the in and out position
181 mlt_position in = mlt_transition_get_in( this );
182
183 // Now do the calcs
184 return position - in;
185 }
186
187 /** Calculate the field delta for this frame - position between two frames.
188 */
189
190 static inline double delta_calculate( mlt_transition this, mlt_frame frame, mlt_position position )
191 {
192 // Get the in and out position
193 mlt_position in = mlt_transition_get_in( this );
194 mlt_position out = mlt_transition_get_out( this );
195 double length = out - in + 1;
196
197 // Now do the calcs
198 double x = ( double )( position - in ) / length;
199 double y = ( double )( position + 1 - in ) / length;
200
201 return length * ( y - x ) / 2.0;
202 }
203
204 static int get_value( mlt_properties properties, const char *preferred, const char *fallback )
205 {
206 int value = mlt_properties_get_int( properties, preferred );
207 if ( value == 0 )
208 value = mlt_properties_get_int( properties, fallback );
209 return value;
210 }
211
212 /** A linear threshold determination function.
213 */
214
215 static inline int32_t linearstep( int32_t edge1, int32_t edge2, int32_t a )
216 {
217 if ( a < edge1 )
218 return 0;
219
220 if ( a >= edge2 )
221 return 0x10000;
222
223 return ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
224 }
225
226 /** A smoother, non-linear threshold determination function.
227 */
228
229 static inline int32_t smoothstep( int32_t edge1, int32_t edge2, uint32_t a )
230 {
231 if ( a < edge1 )
232 return 0;
233
234 if ( a >= edge2 )
235 return 0x10000;
236
237 a = ( ( a - edge1 ) << 16 ) / ( edge2 - edge1 );
238
239 return ( ( ( a * a ) >> 16 ) * ( ( 3 << 16 ) - ( 2 * a ) ) ) >> 16;
240 }
241
242 /** Load the luma map from PGM stream.
243 */
244
245 static void luma_read_pgm( FILE *f, uint16_t **map, int *width, int *height )
246 {
247 uint8_t *data = NULL;
248 while (1)
249 {
250 char line[128];
251 char comment[128];
252 int i = 2;
253 int maxval;
254 int bpp;
255 uint16_t *p;
256
257 line[127] = '\0';
258
259 // get the magic code
260 if ( fgets( line, 127, f ) == NULL )
261 break;
262
263 // skip comments
264 while ( sscanf( line, " #%s", comment ) > 0 )
265 if ( fgets( line, 127, f ) == NULL )
266 break;
267
268 if ( line[0] != 'P' || line[1] != '5' )
269 break;
270
271 // skip white space and see if a new line must be fetched
272 for ( i = 2; i < 127 && line[i] != '\0' && isspace( line[i] ); i++ );
273 if ( ( line[i] == '\0' || line[i] == '#' ) && fgets( line, 127, f ) == NULL )
274 break;
275
276 // skip comments
277 while ( sscanf( line, " #%s", comment ) > 0 )
278 if ( fgets( line, 127, f ) == NULL )
279 break;
280
281 // get the dimensions
282 if ( line[0] == 'P' )
283 i = sscanf( line, "P5 %d %d %d", width, height, &maxval );
284 else
285 i = sscanf( line, "%d %d %d", width, height, &maxval );
286
287 // get the height value, if not yet
288 if ( i < 2 )
289 {
290 if ( fgets( line, 127, f ) == NULL )
291 break;
292
293 // skip comments
294 while ( sscanf( line, " #%s", comment ) > 0 )
295 if ( fgets( line, 127, f ) == NULL )
296 break;
297
298 i = sscanf( line, "%d", height );
299 if ( i == 0 )
300 break;
301 else
302 i = 2;
303 }
304
305 // get the maximum gray value, if not yet
306 if ( i < 3 )
307 {
308 if ( fgets( line, 127, f ) == NULL )
309 break;
310
311 // skip comments
312 while ( sscanf( line, " #%s", comment ) > 0 )
313 if ( fgets( line, 127, f ) == NULL )
314 break;
315
316 i = sscanf( line, "%d", &maxval );
317 if ( i == 0 )
318 break;
319 }
320
321 // determine if this is one or two bytes per pixel
322 bpp = maxval > 255 ? 2 : 1;
323
324 // allocate temporary storage for the raw data
325 data = mlt_pool_alloc( *width * *height * bpp );
326 if ( data == NULL )
327 break;
328
329 // read the raw data
330 if ( fread( data, *width * *height * bpp, 1, f ) != 1 )
331 break;
332
333 // allocate the luma bitmap
334 *map = p = (uint16_t*)mlt_pool_alloc( *width * *height * sizeof( uint16_t ) );
335 if ( *map == NULL )
336 break;
337
338 // proces the raw data into the luma bitmap
339 for ( i = 0; i < *width * *height * bpp; i += bpp )
340 {
341 if ( bpp == 1 )
342 *p++ = data[ i ] << 8;
343 else
344 *p++ = ( data[ i ] << 8 ) + data[ i + 1 ];
345 }
346
347 break;
348 }
349
350 if ( data != NULL )
351 mlt_pool_release( data );
352 }
353
354 /** Generate a luma map from any YUV image.
355 */
356
357 static void luma_read_yuv422( uint8_t *image, uint16_t **map, int width, int height )
358 {
359 int i;
360
361 // allocate the luma bitmap
362 uint16_t *p = *map = ( uint16_t* )mlt_pool_alloc( width * height * sizeof( uint16_t ) );
363 if ( *map == NULL )
364 return;
365
366 // proces the image data into the luma bitmap
367 for ( i = 0; i < width * height * 2; i += 2 )
368 *p++ = ( image[ i ] - 16 ) * 299; // 299 = 65535 / 219
369 }
370
371 static inline int calculate_mix( uint16_t *luma, int j, int soft, int weight, int alpha )
372 {
373 return ( ( ( luma == NULL ) ? weight : smoothstep( luma[ j ], luma[ j ] + soft, weight + soft ) ) * alpha ) >> 8;
374 }
375
376 static inline uint8_t sample_mix( uint8_t dest, uint8_t src, int mix )
377 {
378 return ( src * mix + dest * ( ( 1 << 16 ) - mix ) ) >> 16;
379 }
380
381 /** Composite a source line over a destination line
382 */
383
384 static void composite_line_yuv( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
385 {
386 register int j;
387 register int mix;
388
389 for ( j = 0; j < width; j ++ )
390 {
391 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ );
392 *dest = sample_mix( *dest, *src++, mix );
393 dest++;
394 *dest = sample_mix( *dest, *src++, mix );
395 dest++;
396 *alpha_a = ( mix >> 8 ) | *alpha_a;
397 alpha_a ++;
398 }
399 }
400
401 static void composite_line_yuv_or( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
402 {
403 register int j;
404 register int mix;
405
406 for ( j = 0; j < width; j ++ )
407 {
408 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ | *alpha_a );
409 *dest = sample_mix( *dest, *src++, mix );
410 dest++;
411 *dest = sample_mix( *dest, *src++, mix );
412 dest++;
413 *alpha_a ++ = mix >> 8;
414 }
415 }
416
417 static void composite_line_yuv_and( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
418 {
419 register int j;
420 register int mix;
421
422 for ( j = 0; j < width; j ++ )
423 {
424 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ & *alpha_a );
425 *dest = sample_mix( *dest, *src++, mix );
426 dest++;
427 *dest = sample_mix( *dest, *src++, mix );
428 dest++;
429 *alpha_a ++ = mix >> 8;
430 }
431 }
432
433 static void composite_line_yuv_xor( uint8_t *dest, uint8_t *src, int width, uint8_t *alpha_b, uint8_t *alpha_a, int weight, uint16_t *luma, int soft )
434 {
435 register int j;
436 register int mix;
437
438 for ( j = 0; j < width; j ++ )
439 {
440 mix = calculate_mix( luma, j, soft, weight, *alpha_b ++ ^ *alpha_a );
441 *dest = sample_mix( *dest, *src++, mix );
442 dest++;
443 *dest = sample_mix( *dest, *src++, mix );
444 dest++;
445 *alpha_a ++ = mix >> 8;
446 }
447 }
448
449 /** Composite function.
450 */
451
452 static int composite_yuv( uint8_t *p_dest, int width_dest, int height_dest, uint8_t *p_src, int width_src, int height_src, uint8_t *alpha_b, uint8_t *alpha_a, struct geometry_s geometry, int field, uint16_t *p_luma, int32_t softness, composite_line_fn line_fn )
453 {
454 int ret = 0;
455 int i;
456 int x_src = -geometry.x_src, y_src = -geometry.y_src;
457 int uneven_x_src = ( x_src % 2 );
458 int32_t weight = ( ( 1 << 16 ) - 1 ) * ( geometry.item.mix / 100 );
459 int step = ( field > -1 ) ? 2 : 1;
460 int bpp = 2;
461 int stride_src = geometry.sw * bpp;
462 int stride_dest = width_dest * bpp;
463
464 // Adjust to consumer scale
465 int x = rint( geometry.item.x * width_dest / geometry.nw );
466 int y = rint( geometry.item.y * height_dest / geometry.nh );
467 int uneven_x = ( x % 2 );
468
469 // optimization points - no work to do
470 if ( width_src <= 0 || height_src <= 0 || y_src >= height_src || x_src >= width_src )
471 return ret;
472
473 if ( ( x < 0 && -x >= width_src ) || ( y < 0 && -y >= height_src ) )
474 return ret;
475
476 // cropping affects the source width
477 if ( x_src > 0 )
478 {
479 width_src -= x_src;
480 // and it implies cropping
481 if ( width_src > geometry.item.w )
482 width_src = geometry.item.w;
483 }
484
485 // cropping affects the source height
486 if ( y_src > 0 )
487 {
488 height_src -= y_src;
489 // and it implies cropping
490 if ( height_src > geometry.item.h )
491 height_src = geometry.item.h;
492 }
493
494 // crop overlay off the left edge of frame
495 if ( x < 0 )
496 {
497 x_src = -x;
498 width_src -= x_src;
499 x = 0;
500 }
501
502 // crop overlay beyond right edge of frame
503 if ( x + width_src > width_dest )
504 width_src = width_dest - x;
505
506 // crop overlay off the top edge of the frame
507 if ( y < 0 )
508 {
509 y_src = -y;
510 height_src -= y_src;
511 y = 0;
512 }
513
514 // crop overlay below bottom edge of frame
515 if ( y + height_src > height_dest )
516 height_src = height_dest - y;
517
518 // offset pointer into overlay buffer based on cropping
519 p_src += x_src * bpp + y_src * stride_src;
520
521 // offset pointer into frame buffer based upon positive coordinates only!
522 p_dest += ( x < 0 ? 0 : x ) * bpp + ( y < 0 ? 0 : y ) * stride_dest;
523
524 // offset pointer into alpha channel based upon cropping
525 alpha_b += x_src + y_src * stride_src / bpp;
526 alpha_a += x + y * stride_dest / bpp;
527
528 // offset pointer into luma channel based upon cropping
529 if ( p_luma )
530 p_luma += x_src + y_src * stride_src / bpp;
531
532 // Assuming lower field first
533 // Special care is taken to make sure the b_frame is aligned to the correct field.
534 // field 0 = lower field and y should be odd (y is 0-based).
535 // field 1 = upper field and y should be even.
536 if ( ( field > -1 ) && ( y % 2 == field ) )
537 {
538 if ( ( field == 1 && y < height_dest - 1 ) || ( field == 0 && y == 0 ) )
539 p_dest += stride_dest;
540 else
541 p_dest -= stride_dest;
542 }
543
544 // On the second field, use the other lines from b_frame
545 if ( field == 1 )
546 {
547 p_src += stride_src;
548 alpha_b += stride_src / bpp;
549 alpha_a += stride_dest / bpp;
550 height_src--;
551 }
552
553 stride_src *= step;
554 stride_dest *= step;
555 int alpha_b_stride = stride_src / bpp;
556 int alpha_a_stride = stride_dest / bpp;
557
558 // Align chroma of source and destination
559 if ( uneven_x != uneven_x_src )
560 {
561 p_src += 2;
562 width_src -= 2;
563 alpha_b += 1;
564 }
565
566 // now do the compositing only to cropped extents
567 for ( i = 0; i < height_src; i += step )
568 {
569 line_fn( p_dest, p_src, width_src, alpha_b, alpha_a, weight, p_luma, softness );
570
571 p_src += stride_src;
572 p_dest += stride_dest;
573 alpha_b += alpha_b_stride;
574 alpha_a += alpha_a_stride;
575 if ( p_luma )
576 p_luma += alpha_b_stride;
577 }
578
579 return ret;
580 }
581
582
583 /** Scale 16bit greyscale luma map using nearest neighbor.
584 */
585
586 static inline void
587 scale_luma ( uint16_t *dest_buf, int dest_width, int dest_height, const uint16_t *src_buf, int src_width, int src_height, int invert )
588 {
589 register int i, j;
590 register int x_step = ( src_width << 16 ) / dest_width;
591 register int y_step = ( src_height << 16 ) / dest_height;
592 register int x, y = 0;
593
594 for ( i = 0; i < dest_height; i++ )
595 {
596 const uint16_t *src = src_buf + ( y >> 16 ) * src_width;
597 x = 0;
598
599 for ( j = 0; j < dest_width; j++ )
600 {
601 *dest_buf++ = src[ x >> 16 ] ^ invert;
602 x += x_step;
603 }
604 y += y_step;
605 }
606 }
607
608 static uint16_t* get_luma( mlt_transition this, mlt_properties properties, int width, int height )
609 {
610 // The cached luma map information
611 int luma_width = mlt_properties_get_int( properties, "_luma.width" );
612 int luma_height = mlt_properties_get_int( properties, "_luma.height" );
613 uint16_t *luma_bitmap = mlt_properties_get_data( properties, "_luma.bitmap", NULL );
614 int invert = mlt_properties_get_int( properties, "luma_invert" );
615
616 // If the filename property changed, reload the map
617 char *resource = mlt_properties_get( properties, "luma" );
618
619 char temp[ 512 ];
620
621 if ( luma_width == 0 || luma_height == 0 )
622 {
623 luma_width = width;
624 luma_height = height;
625 }
626
627 if ( resource && resource[0] && strchr( resource, '%' ) )
628 {
629 // TODO: Clean up quick and dirty compressed/existence check
630 FILE *test;
631 sprintf( temp, "%s/lumas/%s/%s", mlt_environment( "MLT_DATA" ), mlt_environment( "MLT_NORMALISATION" ), strchr( resource, '%' ) + 1 );
632 test = fopen( temp, "r" );
633 if ( test == NULL )
634 strcat( temp, ".png" );
635 else
636 fclose( test );
637 resource = temp;
638 }
639
640 if ( resource && resource[0] )
641 {
642 char *old_luma = mlt_properties_get( properties, "_luma" );
643 int old_invert = mlt_properties_get_int( properties, "_luma_invert" );
644
645 if ( invert != old_invert || ( old_luma && old_luma[0] && strcmp( resource, old_luma ) ) )
646 {
647 mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
648 luma_bitmap = NULL;
649 }
650 }
651 else {
652 char *old_luma = mlt_properties_get( properties, "_luma" );
653 if ( old_luma && old_luma[0] )
654 {
655 mlt_properties_set_data( properties, "_luma.orig_bitmap", NULL, 0, NULL, NULL );
656 luma_bitmap = NULL;
657 mlt_properties_set( properties, "_luma", NULL);
658 }
659 }
660
661 if ( resource && resource[0] && ( luma_bitmap == NULL || luma_width != width || luma_height != height ) )
662 {
663 uint16_t *orig_bitmap = mlt_properties_get_data( properties, "_luma.orig_bitmap", NULL );
664 luma_width = mlt_properties_get_int( properties, "_luma.orig_width" );
665 luma_height = mlt_properties_get_int( properties, "_luma.orig_height" );
666
667 // Load the original luma once
668 if ( orig_bitmap == NULL )
669 {
670 char *extension = strrchr( resource, '.' );
671
672 // See if it is a PGM
673 if ( extension != NULL && strcmp( extension, ".pgm" ) == 0 )
674 {
675 // Open PGM
676 FILE *f = fopen( resource, "r" );
677 if ( f != NULL )
678 {
679 // Load from PGM
680 luma_read_pgm( f, &orig_bitmap, &luma_width, &luma_height );
681 fclose( f );
682
683 // Remember the original size for subsequent scaling
684 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
685 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
686 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
687 }
688 }
689 else
690 {
691 // Get the factory producer service
692 char *factory = mlt_properties_get( properties, "factory" );
693
694 // Create the producer
695 mlt_profile profile = mlt_service_profile( MLT_TRANSITION_SERVICE( this ) );
696 mlt_producer producer = mlt_factory_producer( profile, factory, resource );
697
698 // If we have one
699 if ( producer != NULL )
700 {
701 // Get the producer properties
702 mlt_properties producer_properties = MLT_PRODUCER_PROPERTIES( producer );
703
704 // Ensure that we loop
705 mlt_properties_set( producer_properties, "eof", "loop" );
706
707 // Now pass all producer. properties on the transition down
708 mlt_properties_pass( producer_properties, properties, "luma." );
709
710 // We will get the alpha frame from the producer
711 mlt_frame luma_frame = NULL;
712
713 // Get the luma frame
714 if ( mlt_service_get_frame( MLT_PRODUCER_SERVICE( producer ), &luma_frame, 0 ) == 0 )
715 {
716 uint8_t *luma_image;
717 mlt_image_format luma_format = mlt_image_yuv422;
718
719 // Get image from the luma producer
720 mlt_properties_set( MLT_FRAME_PROPERTIES( luma_frame ), "rescale.interp", "none" );
721 mlt_frame_get_image( luma_frame, &luma_image, &luma_format, &luma_width, &luma_height, 0 );
722
723 // Generate the luma map
724 if ( luma_image != NULL && luma_format == mlt_image_yuv422 )
725 luma_read_yuv422( luma_image, &orig_bitmap, luma_width, luma_height );
726
727 // Remember the original size for subsequent scaling
728 mlt_properties_set_data( properties, "_luma.orig_bitmap", orig_bitmap, luma_width * luma_height * 2, mlt_pool_release, NULL );
729 mlt_properties_set_int( properties, "_luma.orig_width", luma_width );
730 mlt_properties_set_int( properties, "_luma.orig_height", luma_height );
731
732 // Cleanup the luma frame
733 mlt_frame_close( luma_frame );
734 }
735
736 // Cleanup the luma producer
737 mlt_producer_close( producer );
738 }
739 }
740 }
741 // Scale luma map
742 luma_bitmap = mlt_pool_alloc( width * height * sizeof( uint16_t ) );
743 scale_luma( luma_bitmap, width, height, orig_bitmap, luma_width, luma_height, invert * ( ( 1 << 16 ) - 1 ) );
744
745 // Remember the scaled luma size to prevent unnecessary scaling
746 mlt_properties_set_int( properties, "_luma.width", width );
747 mlt_properties_set_int( properties, "_luma.height", height );
748 mlt_properties_set_data( properties, "_luma.bitmap", luma_bitmap, width * height * 2, mlt_pool_release, NULL );
749 mlt_properties_set( properties, "_luma", resource );
750 mlt_properties_set_int( properties, "_luma_invert", invert );
751 }
752 return luma_bitmap;
753 }
754
755 /** Get the properly sized image from b_frame.
756 */
757
758 static int get_b_frame_image( mlt_transition this, mlt_frame b_frame, uint8_t **image, int *width, int *height, struct geometry_s *geometry )
759 {
760 int ret = 0;
761 mlt_image_format format = mlt_image_yuv422;
762
763 // Get the properties objects
764 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
765 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
766 uint8_t resize_alpha = mlt_properties_get_int( b_props, "resize_alpha" );
767
768 // Do not scale if we are cropping - the compositing rectangle can crop the b image
769 // TODO: Use the animatable w and h of the crop geometry to scale independently of crop rectangle
770 if ( mlt_properties_get( properties, "crop" ) )
771 {
772 int real_width = get_value( b_props, "real_width", "width" );
773 int real_height = get_value( b_props, "real_height", "height" );
774 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
775 double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
776 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
777 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
778 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
779 int scaled_height = real_height;
780 geometry->sw = scaled_width;
781 geometry->sh = scaled_height;
782 }
783 // Normalise aspect ratios and scale preserving aspect ratio
784 else if ( mlt_properties_get_int( properties, "aligned" ) && mlt_properties_get_int( properties, "distort" ) == 0 && mlt_properties_get_int( b_props, "distort" ) == 0 && geometry->item.distort == 0 )
785 {
786 // Adjust b_frame pixel aspect
787 int normalised_width = geometry->item.w;
788 int normalised_height = geometry->item.h;
789 int real_width = get_value( b_props, "real_width", "width" );
790 int real_height = get_value( b_props, "real_height", "height" );
791 double input_ar = mlt_properties_get_double( b_props, "aspect_ratio" );
792 double consumer_ar = mlt_properties_get_double( b_props, "consumer_aspect_ratio" );
793 double background_ar = mlt_properties_get_double( b_props, "output_ratio" );
794 double output_ar = background_ar != 0.0 ? background_ar : consumer_ar;
795 int scaled_width = rint( ( input_ar == 0.0 ? output_ar : input_ar ) / output_ar * real_width );
796 int scaled_height = real_height;
797 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d real %dx%d output_ar %f => %f\n", __FILE__,
798 // scaled_width, scaled_height, normalised_width, normalised_height, real_width, real_height,
799 // background_ar, output_ar);
800
801 // Now ensure that our images fit in the normalised frame
802 if ( scaled_width > normalised_width )
803 {
804 scaled_height = rint( scaled_height * normalised_width / scaled_width );
805 scaled_width = normalised_width;
806 }
807 if ( scaled_height > normalised_height )
808 {
809 scaled_width = rint( scaled_width * normalised_height / scaled_height );
810 scaled_height = normalised_height;
811 }
812
813 // Honour the fill request - this will scale the image to fill width or height while maintaining a/r
814 // ????: Shouln't this be the default behaviour?
815 if ( mlt_properties_get_int( properties, "fill" ) && scaled_width > 0 && scaled_height > 0 )
816 {
817 if ( scaled_height < normalised_height && scaled_width * normalised_height / scaled_height <= normalised_width )
818 {
819 scaled_width = rint( scaled_width * normalised_height / scaled_height );
820 scaled_height = normalised_height;
821 }
822 else if ( scaled_width < normalised_width && scaled_height * normalised_width / scaled_width < normalised_height )
823 {
824 scaled_height = rint( scaled_height * normalised_width / scaled_width );
825 scaled_width = normalised_width;
826 }
827 }
828
829 // Save the new scaled dimensions
830 geometry->sw = scaled_width;
831 geometry->sh = scaled_height;
832 }
833 else
834 {
835 geometry->sw = geometry->item.w;
836 geometry->sh = geometry->item.h;
837 }
838
839 // We want to ensure that we bypass resize now...
840 if ( resize_alpha == 0 )
841 mlt_properties_set_int( b_props, "distort", mlt_properties_get_int( properties, "distort" ) );
842
843 // If we're not aligned, we want a non-transparent background
844 if ( mlt_properties_get_int( properties, "aligned" ) == 0 )
845 mlt_properties_set_int( b_props, "resize_alpha", 255 );
846
847 // Take into consideration alignment for optimisation (titles are a special case)
848 if ( !mlt_properties_get_int( properties, "titles" ) &&
849 mlt_properties_get( properties, "crop" ) == NULL )
850 alignment_calculate( geometry );
851
852 // Adjust to consumer scale
853 *width = rint( geometry->sw * *width / geometry->nw );
854 *height = rint( geometry->sh * *height / geometry->nh );
855 // fprintf(stderr, "%s: scaled %dx%d norm %dx%d resize %dx%d\n", __FILE__,
856 // geometry->sw, geometry->sh, geometry->nw, geometry->nh, *width, *height);
857
858 ret = mlt_frame_get_image( b_frame, image, &format, width, height, 1 );
859
860 // Set the frame back
861 mlt_properties_set_int( b_props, "resize_alpha", resize_alpha );
862
863 return ret && image != NULL;
864 }
865
866 static void crop_calculate( mlt_transition this, mlt_properties properties, struct geometry_s *result, double position )
867 {
868 // Initialize panning info
869 result->x_src = 0;
870 result->y_src = 0;
871 if ( mlt_properties_get( properties, "crop" ) )
872 {
873 mlt_geometry crop = mlt_properties_get_data( properties, "crop_geometry", NULL );
874 if ( !crop )
875 {
876 crop = mlt_geometry_init();
877 mlt_position in = mlt_transition_get_in( this );
878 mlt_position out = mlt_transition_get_out( this );
879 int length = out - in + 1;
880 double cycle = mlt_properties_get_double( properties, "cycle" );
881
882 // Allow a geometry repeat cycle
883 if ( cycle >= 1 )
884 length = cycle;
885 else if ( cycle > 0 )
886 length *= cycle;
887 mlt_geometry_parse( crop, mlt_properties_get( properties, "crop" ), length, result->sw, result->sh );
888 mlt_properties_set_data( properties, "crop_geometry", crop, 0, (mlt_destructor)mlt_geometry_close, NULL );
889 }
890
891 // Repeat processing
892 int length = mlt_geometry_get_length( crop );
893 int mirror_off = mlt_properties_get_int( properties, "mirror_off" );
894 int repeat_off = mlt_properties_get_int( properties, "repeat_off" );
895 if ( !repeat_off && position >= length && length != 0 )
896 {
897 int section = position / length;
898 position -= section * length;
899 if ( !mirror_off && section % 2 == 1 )
900 position = length - position;
901 }
902
903 // Compute the pan
904 struct mlt_geometry_item_s crop_item;
905 mlt_geometry_fetch( crop, &crop_item, position );
906 result->x_src = rint( crop_item.x );
907 result->y_src = rint( crop_item.y );
908 }
909 }
910
911 static mlt_geometry composite_calculate( mlt_transition this, struct geometry_s *result, mlt_frame a_frame, double position )
912 {
913 // Get the properties from the transition
914 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
915
916 // Get the properties from the frame
917 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
918
919 // Structures for geometry
920 mlt_geometry start = mlt_properties_get_data( properties, "geometries", NULL );
921
922 // Obtain the normalised width and height from the a_frame
923 int normalised_width = mlt_properties_get_int( a_props, "normalised_width" );
924 int normalised_height = mlt_properties_get_int( a_props, "normalised_height" );
925
926 char *name = mlt_properties_get( properties, "_unique_id" );
927 char key[ 256 ];
928
929 sprintf( key, "%s.in", name );
930 if ( mlt_properties_get( a_props, key ) )
931 {
932 sscanf( mlt_properties_get( a_props, key ), "%f,%f,%f,%f,%f,%d,%d", &result->item.x, &result->item.y, &result->item.w, &result->item.h, &result->item.mix, &result->nw, &result->nh );
933 }
934 else
935 {
936 // Now parse the geometries
937 if ( start == NULL )
938 {
939 // Parse the transitions properties
940 start = transition_parse_keys( this, normalised_width, normalised_height );
941
942 // Assign to properties to ensure we get destroyed
943 mlt_properties_set_data( properties, "geometries", start, 0, ( mlt_destructor )mlt_geometry_close, NULL );
944 }
945 else
946 {
947 int length = mlt_transition_get_out( this ) - mlt_transition_get_in( this ) + 1;
948 double cycle = mlt_properties_get_double( properties, "cycle" );
949 if ( cycle > 1 )
950 length = cycle;
951 else if ( cycle > 0 )
952 length *= cycle;
953 mlt_geometry_refresh( start, mlt_properties_get( properties, "geometry" ), length, normalised_width, normalised_height );
954 }
955
956 // Do the calculation
957 geometry_calculate( this, result, position );
958
959 // Assign normalised info
960 result->nw = normalised_width;
961 result->nh = normalised_height;
962 }
963
964 // Now parse the alignment
965 result->halign = alignment_parse( mlt_properties_get( properties, "halign" ) );
966 result->valign = alignment_parse( mlt_properties_get( properties, "valign" ) );
967
968 crop_calculate( this, properties, result, position );
969
970 return start;
971 }
972
973 mlt_frame composite_copy_region( mlt_transition this, mlt_frame a_frame, mlt_position frame_position )
974 {
975 // Create a frame to return
976 mlt_frame b_frame = mlt_frame_init( MLT_TRANSITION_SERVICE( this ) );
977
978 // Get the properties of the a frame
979 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
980
981 // Get the properties of the b frame
982 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
983
984 // Get the position
985 int position = position_calculate( this, frame_position );
986
987 // Get the unique id of the transition
988 char *name = mlt_properties_get( MLT_TRANSITION_PROPERTIES( this ), "_unique_id" );
989 char key[ 256 ];
990
991 // Destination image
992 uint8_t *dest = NULL;
993
994 // Get the image and dimensions
995 uint8_t *image = mlt_properties_get_data( a_props, "image", NULL );
996 int width = mlt_properties_get_int( a_props, "width" );
997 int height = mlt_properties_get_int( a_props, "height" );
998 int format = mlt_properties_get_int( a_props, "format" );
999
1000 // Pointers for copy operation
1001 uint8_t *p;
1002
1003 // Coordinates
1004 int w = 0;
1005 int h = 0;
1006 int x = 0;
1007 int y = 0;
1008
1009 int ss = 0;
1010 int ds = 0;
1011
1012 // Will need to know region to copy
1013 struct geometry_s result;
1014
1015 // Calculate the region now
1016 composite_calculate( this, &result, a_frame, position );
1017
1018 // Need to scale down to actual dimensions
1019 x = rint( result.item.x * width / result.nw );
1020 y = rint( result.item.y * height / result.nh );
1021 w = rint( result.item.w * width / result.nw );
1022 h = rint( result.item.h * height / result.nh );
1023
1024 if ( x % 2 )
1025 {
1026 x --;
1027 w ++;
1028 }
1029
1030 // Store the key
1031 sprintf( key, "%s.in=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1032 mlt_properties_parse( a_props, key );
1033 sprintf( key, "%s.out=%d,%d,%d,%d,%f,%d,%d", name, x, y, w, h, result.item.mix, width, height );
1034 mlt_properties_parse( a_props, key );
1035
1036 ds = w * 2;
1037 ss = width * 2;
1038
1039 // Now we need to create a new destination image
1040 dest = mlt_pool_alloc( w * h * 2 );
1041
1042 // Assign to the new frame
1043 mlt_properties_set_data( b_props, "image", dest, w * h * 2, mlt_pool_release, NULL );
1044 mlt_properties_set_int( b_props, "width", w );
1045 mlt_properties_set_int( b_props, "height", h );
1046 mlt_properties_set_int( b_props, "format", format );
1047
1048 if ( y < 0 )
1049 {
1050 dest += ( ds * -y );
1051 h += y;
1052 y = 0;
1053 }
1054
1055 if ( y + h > height )
1056 h -= ( y + h - height );
1057
1058 if ( x < 0 )
1059 {
1060 dest += -x * 2;
1061 w += x;
1062 x = 0;
1063 }
1064
1065 if ( w > 0 && h > 0 )
1066 {
1067 // Copy the region of the image
1068 p = image + y * ss + x * 2;
1069
1070 while ( h -- )
1071 {
1072 memcpy( dest, p, w * 2 );
1073 dest += ds;
1074 p += ss;
1075 }
1076 }
1077
1078 // Assign this position to the b frame
1079 mlt_frame_set_position( b_frame, frame_position );
1080 mlt_properties_set_int( b_props, "distort", 1 );
1081
1082 // Return the frame
1083 return b_frame;
1084 }
1085
1086 /** Get the image.
1087 */
1088
1089 static int transition_get_image( mlt_frame a_frame, uint8_t **image, mlt_image_format *format, int *width, int *height, int writable )
1090 {
1091 // Get the b frame from the stack
1092 mlt_frame b_frame = mlt_frame_pop_frame( a_frame );
1093
1094 // Get the transition from the a frame
1095 mlt_transition this = mlt_frame_pop_service( a_frame );
1096
1097 // Get in and out
1098 double position = mlt_deque_pop_back_double( MLT_FRAME_IMAGE_STACK( a_frame ) );
1099 int out = mlt_frame_pop_service_int( a_frame );
1100 int in = mlt_frame_pop_service_int( a_frame );
1101
1102 // Get the properties from the transition
1103 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1104
1105 // TODO: clean up always_active behaviour
1106 if ( mlt_properties_get_int( properties, "always_active" ) )
1107 {
1108 mlt_events_block( properties, properties );
1109 mlt_properties_set_int( properties, "in", in );
1110 mlt_properties_set_int( properties, "out", out );
1111 mlt_events_unblock( properties, properties );
1112 }
1113
1114 // This compositer is yuv422 only
1115 *format = mlt_image_yuv422;
1116
1117 if ( b_frame != NULL )
1118 {
1119 // Get the properties of the a frame
1120 mlt_properties a_props = MLT_FRAME_PROPERTIES( a_frame );
1121
1122 // Get the properties of the b frame
1123 mlt_properties b_props = MLT_FRAME_PROPERTIES( b_frame );
1124
1125 // Structures for geometry
1126 struct geometry_s result;
1127
1128 // Calculate the position
1129 double delta = delta_calculate( this, a_frame, position );
1130
1131 // Get the image from the b frame
1132 uint8_t *image_b = NULL;
1133 int width_b = *width;
1134 int height_b = *height;
1135
1136 // Vars for alphas
1137 uint8_t *alpha_a = NULL;
1138 uint8_t *alpha_b = NULL;
1139
1140 // Composites always need scaling... defaulting to lowest
1141 const char *rescale = mlt_properties_get( a_props, "rescale.interp" );
1142 if ( rescale == NULL || !strcmp( rescale, "none" ) )
1143 rescale = "nearest";
1144 mlt_properties_set( a_props, "rescale.interp", rescale );
1145 mlt_properties_set( b_props, "rescale.interp", rescale );
1146
1147 // Do the calculation
1148 // NB: Locks needed here since the properties are being modified
1149 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1150 composite_calculate( this, &result, a_frame, position );
1151 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1152
1153 // Since we are the consumer of the b_frame, we must pass along these
1154 // consumer properties from the a_frame
1155 mlt_properties_set_int( b_props, "consumer_deinterlace", mlt_properties_get_int( a_props, "consumer_deinterlace" ) || mlt_properties_get_int( properties, "deinterlace" ) );
1156 mlt_properties_set( b_props, "consumer_deinterlace_method", mlt_properties_get( a_props, "consumer_deinterlace_method" ) );
1157 mlt_properties_set_double( b_props, "consumer_aspect_ratio", mlt_properties_get_double( a_props, "consumer_aspect_ratio" ) );
1158
1159 // TODO: Dangerous/temporary optimisation - if nothing to do, then do nothing
1160 if ( mlt_properties_get_int( properties, "no_alpha" ) &&
1161 result.item.x == 0 && result.item.y == 0 && result.item.w == *width && result.item.h == *height && result.item.mix == 100 )
1162 {
1163 mlt_frame_get_image( b_frame, image, format, width, height, 1 );
1164 if ( !mlt_frame_is_test_card( a_frame ) )
1165 mlt_frame_replace_image( a_frame, *image, *format, *width, *height );
1166 return 0;
1167 }
1168
1169 if ( a_frame == b_frame )
1170 {
1171 double aspect_ratio = mlt_frame_get_aspect_ratio( b_frame );
1172 get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result );
1173 alpha_b = mlt_frame_get_alpha_mask( b_frame );
1174 mlt_properties_set_double( a_props, "aspect_ratio", aspect_ratio );
1175 }
1176
1177 // Get the image from the a frame
1178 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1179 alpha_a = mlt_frame_get_alpha_mask( a_frame );
1180
1181 // Optimisation - no compositing required
1182 if ( result.item.mix == 0 || ( result.item.w == 0 && result.item.h == 0 ) )
1183 return 0;
1184
1185 // Need to keep the width/height of the a_frame on the b_frame for titling
1186 if ( mlt_properties_get( a_props, "dest_width" ) == NULL )
1187 {
1188 mlt_properties_set_int( a_props, "dest_width", *width );
1189 mlt_properties_set_int( a_props, "dest_height", *height );
1190 mlt_properties_set_int( b_props, "dest_width", *width );
1191 mlt_properties_set_int( b_props, "dest_height", *height );
1192 }
1193 else
1194 {
1195 mlt_properties_set_int( b_props, "dest_width", mlt_properties_get_int( a_props, "dest_width" ) );
1196 mlt_properties_set_int( b_props, "dest_height", mlt_properties_get_int( a_props, "dest_height" ) );
1197 }
1198
1199 // Special case for titling...
1200 if ( mlt_properties_get_int( properties, "titles" ) )
1201 {
1202 if ( mlt_properties_get( b_props, "rescale.interp" ) == NULL )
1203 mlt_properties_set( b_props, "rescale.interp", "hyper" );
1204 width_b = mlt_properties_get_int( a_props, "dest_width" );
1205 height_b = mlt_properties_get_int( a_props, "dest_height" );
1206 }
1207
1208 if ( *image != image_b && ( image_b != NULL || get_b_frame_image( this, b_frame, &image_b, &width_b, &height_b, &result ) == 0 ) )
1209 {
1210 uint8_t *dest = *image;
1211 uint8_t *src = image_b;
1212 int progressive =
1213 mlt_properties_get_int( a_props, "consumer_deinterlace" ) ||
1214 mlt_properties_get_int( properties, "progressive" );
1215 int field;
1216
1217 int32_t luma_softness = mlt_properties_get_double( properties, "softness" ) * ( 1 << 16 );
1218 uint16_t *luma_bitmap = get_luma( this, properties, width_b, height_b );
1219 char *operator = mlt_properties_get( properties, "operator" );
1220
1221 alpha_b = alpha_b == NULL ? mlt_frame_get_alpha_mask( b_frame ) : alpha_b;
1222
1223 composite_line_fn line_fn = composite_line_yuv;
1224
1225 // Replacement and override
1226 if ( operator != NULL )
1227 {
1228 if ( !strcmp( operator, "or" ) )
1229 line_fn = composite_line_yuv_or;
1230 if ( !strcmp( operator, "and" ) )
1231 line_fn = composite_line_yuv_and;
1232 if ( !strcmp( operator, "xor" ) )
1233 line_fn = composite_line_yuv_xor;
1234 }
1235
1236 // Allow the user to completely obliterate the alpha channels from both frames
1237 if ( mlt_properties_get( properties, "alpha_a" ) )
1238 memset( alpha_a, mlt_properties_get_int( properties, "alpha_a" ), *width * *height );
1239
1240 if ( mlt_properties_get( properties, "alpha_b" ) )
1241 memset( alpha_b, mlt_properties_get_int( properties, "alpha_b" ), width_b * height_b );
1242
1243 for ( field = 0; field < ( progressive ? 1 : 2 ); field++ )
1244 {
1245 // Assume lower field (0) first
1246 double field_position = position + field * delta;
1247
1248 // Do the calculation if we need to
1249 // NB: Locks needed here since the properties are being modified
1250 mlt_service_lock( MLT_TRANSITION_SERVICE( this ) );
1251 composite_calculate( this, &result, a_frame, field_position );
1252 mlt_service_unlock( MLT_TRANSITION_SERVICE( this ) );
1253
1254 if ( mlt_properties_get_int( properties, "titles" ) )
1255 {
1256 result.item.w = rint( *width * ( result.item.w / result.nw ) );
1257 result.nw = result.item.w;
1258 result.item.h = rint( *height * ( result.item.h / result.nh ) );
1259 result.nh = *height;
1260 result.sw = width_b;
1261 result.sh = height_b;
1262 }
1263
1264 // Enforce cropping
1265 if ( mlt_properties_get( properties, "crop" ) )
1266 {
1267 if ( result.x_src == 0 )
1268 width_b = width_b > result.item.w ? result.item.w : width_b;
1269 if ( result.y_src == 0 )
1270 height_b = height_b > result.item.h ? result.item.h : height_b;
1271 }
1272 else
1273 {
1274 // Otherwise, align
1275 alignment_calculate( &result );
1276 }
1277
1278 // Composite the b_frame on the a_frame
1279 composite_yuv( dest, *width, *height, src, width_b, height_b, alpha_b, alpha_a, result, progressive ? -1 : field, luma_bitmap, luma_softness, line_fn );
1280 }
1281 }
1282 }
1283 else
1284 {
1285 mlt_frame_get_image( a_frame, image, format, width, height, 1 );
1286 }
1287
1288 return 0;
1289 }
1290
1291 /** Composition transition processing.
1292 */
1293
1294 static mlt_frame composite_process( mlt_transition this, mlt_frame a_frame, mlt_frame b_frame )
1295 {
1296 // UGH - this is a TODO - find a more reliable means of obtaining in/out for the always_active case
1297 if ( mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "always_active" ) == 0 )
1298 {
1299 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "in" ) );
1300 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( MLT_TRANSITION_PROPERTIES( this ), "out" ) );
1301 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), position_calculate( this, mlt_frame_get_position( a_frame ) ) );
1302 }
1303 else
1304 {
1305 mlt_properties props = mlt_properties_get_data( MLT_FRAME_PROPERTIES( b_frame ), "_producer", NULL );
1306 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "in" ) );
1307 mlt_frame_push_service_int( a_frame, mlt_properties_get_int( props, "out" ) );
1308 mlt_deque_push_back_double( MLT_FRAME_IMAGE_STACK( a_frame ), mlt_properties_get_int( props, "_frame" ) - mlt_properties_get_int( props, "in" ) );
1309 }
1310
1311 mlt_frame_push_service( a_frame, this );
1312 mlt_frame_push_frame( a_frame, b_frame );
1313 mlt_frame_push_get_image( a_frame, transition_get_image );
1314 return a_frame;
1315 }
1316
1317 /** Constructor for the filter.
1318 */
1319
1320 mlt_transition transition_composite_init( mlt_profile profile, mlt_service_type type, const char *id, char *arg )
1321 {
1322 mlt_transition this = calloc( sizeof( struct mlt_transition_s ), 1 );
1323 if ( this != NULL && mlt_transition_init( this, NULL ) == 0 )
1324 {
1325 mlt_properties properties = MLT_TRANSITION_PROPERTIES( this );
1326
1327 this->process = composite_process;
1328
1329 // Default starting motion and zoom
1330 mlt_properties_set( properties, "start", arg != NULL ? arg : "0,0:100%x100%" );
1331
1332 // Default factory
1333 mlt_properties_set( properties, "factory", "fezzik" );
1334
1335 // Use alignment (and hence alpha of b frame)
1336 mlt_properties_set_int( properties, "aligned", 1 );
1337
1338 // Inform apps and framework that this is a video only transition
1339 mlt_properties_set_int( properties, "_transition_type", 1 );
1340 }
1341 return this;
1342 }